EVALUATE THE ANTI-INFLAMMATORY ACTIVITY AS WELL AS APOPTOTIC ACTIVITY OF ETHANOLIC EXTRACTS OF CROCUS SATIVUS

ABSTRACT

Background: Inflammation is a body reaction which embroils cellular and biochemical responses, which is not only symptom for shared diseases but also known to be an initial phase for certain serious Alzheimer's, cancer, heart vascular diseases. In order to overcome these drawbacks, there is an urgent need for nutraceuticals with excellent anti-inflammatory response with minimum side effects. Aim: An attempt has been made to evaluate the anti-inflammatory activity along with gene expression analysis on ethanolic extracts of Crocus sativus(CSEE). Methods: Dried stigmas of *C. sativus* were analyzed for anti-inflammatory activity by macrophage scavenging assay. In this study, the phagocytic activity of the extract was tested on oxidative burst reduction of macrophages. RT-PCR was performed to analyze the anti-apoptotic gene expression during cell death, as a result of the compound treatment on cancer cells. Result: The CSEE unveiled high phagocytic activity on the oxidative burst reduction, presenting intracellular killing and the enhancement of lysosomal enzyme activity, showing the active degranulation of macrophages. Conclusion: These findings suggest that C. sativus possessed excellent antiinflammatory as well as apoptotic activities. Hence it was proposed that C.sativuscould be exploited against oxidative stress, anti-inflammatory, cancer and ageing therapy to justify their use in traditional medicine as a nutraceutical.

KEY WORDS: Anti-inflammatory, *Crocus sativus*, Macrophage, Nutraceutical, Oxidative stress.

INTRODUCTION

Inflammation is a physiological reaction which involves cellular and biochemical responses, which is not only symptom for common diseases but also known to be an early phase for some serious diseases such as alzheimer's disease, cancer, heart vascular diseases etc [1].Non-steroidal anti-inflammatory drugs like ketoprofen, ibuprofen, aceclofenac, algesia and pyresis are under current clinical usage for the treatment of inflammation [2], but due to the decrease in production of prostaglandins in tissue [3] and due to the direct contact of free carboxylic group with the gastric mucosa they were associated with major drawbacks of gastrointestinal disorders like dyspepsia, and gastric ulcers [4, 5]. In order to overcome these drawbacks, there is an urgent need for nutraceuticals with excellent anti-inflammatory response and minimum side effects. The term "nutraceutical" combines two words "nutrient" (a nourishing food component) and "pharmaceutical" (a medical drug). The name was coined in 1989 by Stephen DeFelice, founder and chairman of the Foundation for Innovation in Medicine, an American organization located in Cranford, New Jersey. The philosophy behind nutraceuticals is to focus on prevention, according to the saying by a Greek physician Hippocrates (known as the father of medicine) who said "let food be your medicine". Their role in human nutrition is one of the most important areas of investigation, with wide-ranging implications for consumers, health-care providers, regulators,

food producers and distributors. Nutraceuticals are increasingly being used as nutritional supplements in treatment of diseases. Due to the plant origin of these supplements they are considered safe for human consumption. However, the levels of the active substance consumed vary when taken as a whole food, as compared to a nutritional supplement [6, 7]. Very few studies have reported on long-term effects of nutrition supplements in humans. Among the nutraceutics, *Crocus sativus* is an important crop cultivated as the source of its spice for at least 3,500 years. Dried stigmas of saffron flowers compose the most expensive spice which has been valuable since ancient times for its odoriferous, coloring and its medicinal properties [8]. Saffron has been also used as a drug to treat various human health conditions such as coughs, stomach disorders, colic, insomnia, chronic uterine haemorrhage, femine disorder, scarlet fever, smallpox, colds, asthma and cardiovascular disorders [9-11]. Earlier reports say that extractive of saffron shows antitumor effect against different malignant cells [12] and different tumors as well as cancers in ancient time [13]. The present study is focused to evaluate the anti-inflammatory activity along with apoptotic activity ofethanolic extracts of *C.sativus* (CSEE).

MATERIALS AND METHODS

Chemical:

Nitrobluetetrazolium dye, Dimethysulfoxide, Ethanol and all other chemicals and solvents were purchased from Sigma Chemical Co, St. Louis, MO, USA.

Sample collection:

Fresh stigma of *C.sativus* samples were purchased commercially from Nilgiris. Sample was authenticated based on organoleptic, macroscopic examination (PARC/2012/1254) and certified by Dr. P. Jayaraman, Director "National institute of Herbal Science & Plant Anatomy Research Centre" (PARC), West Tambaram, Chennai, Tamilnadu, India.

Preparation of *CSEE*

The *CSEE* was prepared as described by the standard method [14]. Ten grams of *C. sativus* dried stigma was coarsely powdered and weighed. The dried powder was soaked with ethanol for 48hr with intermediate shaking separately. At the end of the extraction, it was passed through Whatman filter paper No.1 (Whatman Ltd., England). Then the filtrate was concentrated by distillation over boiling water bath and the last traces of solvent were removed under vacuum. The yield of the extract was calculated (1.0443g), stored in dry sterile container and used for further study.

Macrophage scavenging assay:

Nitrobluetetrazolium dye reduction assay was carried out formacrophage scavenging assay [15].Briefly, 20µl of the macrophage suspension and 40µl of Roswell park memorial institute medium (RPMI) were added in a flat bottom 96-well plate. Twenty microliter of the solution containing the *CSEE* dissolved in 0.1% Dimethysulfoxide(DMSO) in phosphate buffer saline solution was added in each well at final extract concentrations of 10µg/ml, 100µg/ml, 500µg/ml and 1000µg/ml. The 0.1% DMSO in phosphate buffer alone used as a control. After incubation for 24hr at 37°C in 5% CO₂ humidified atmosphere, 20µl of the heated inactivated yeast (*Saccharomyces cerevisiae*) suspension (5×10⁷ particles/ml) and 20µl of Nitrobluetetrazolium solution in phosphate buffer (1.5mg/ml) were added and the mixture was further incubated under the same conditions. After incubation for 60min, the adherent macrophages were rinsed vigorously with RPMI medium and washed for four times with 200ml methanol. After air-dried, 120µl of 2M KOH and 140µl of DMSO were added. The absorbance was measured at 570nm by a well reader (Biorad Plate reader) and the percentage of NBT reduction was calculated by the following equation.

NBT reduction (%) = OD sample – OD negative control / OD negative control \times 100.

The EC₅₀ value represents the effective concentration required for 50% enhancement of oxidative burst reduction activity.

RT-PCR

RT-PCR was performed to analyze the gene expression during cell death, as a result of the compound treatment on cancer cells. Cells were harvested after treatment with active fraction. Total RNA was separated and cDNA was synthesized according to the manufacturer's protocol (Sigma Aldrich, USA). Using this cDNA as template, PCR was performed with Tnf and GAPDH gene specific primers.

Total RNA isolation

Total RNA from cell lines was separated using ONE STEP-RNA solution (phenol and guanidine isothiocyanate). It is a ready to be used reagent for the isolation of total RNA from cells and tissues. The reagent, mono-phasic solution of phenol and guanidine isothiocyanate, represents an improvement to the single step RNA isolation method developed by Chomczynski and Sacchi, [16]. In order to decrease the possibility of RNA degradation during the procedure, all glassware and plastic ware were treated by incubating them overnight in 0.01% DEPC water (RNase-free) to decrease or reduce the risk of RNA begin depredated by RNase[17]. After incubation, all of the materials used for isolation were autoclaved and dried in the oven. Approximately 5-10x10⁶ cultured cells were taken to ensure for RNA isolation. Cells were pelleted by centrifugation at 1000rpm, 5minutes and 1ml of ONE STEP-RNA reagent was added. Cell lysis was performed by repeated pipetting. Homogenized samples were incubated at 15 to 30°C for 5min to allow the complete dissociation of nucleoprotein complexes; 0.2ml of chloroform per 1ml of ONE STEP-RNA reagent to the sample. Tubes were shaken vigorously by hand for 15sec and incubated at 15 to 30°C for about 2 to 3min and then the samples were centrifuged at 12,000 rpm for 15min at 2 to 8°C. The mixture separated into two phase, lower phenol-chloroform interphase of cloudy white and upper colorless aqueous phase. The RNA remains exclusively in 60% volume of upper aqueous phase of ONE STEP-RNA reagent used for homogenization. RNA was precipitated from the aqueous phase by mixing it with isopropyl alcohol. Samples were incubated at 15 to 30°C for 10min and centrifuged at 12,000rpm for 10min at 2 to 8°C. The RNA precipitate, often invisible before centrifugation, supernatant was removed and the gel-like RNA pellet at the bottom was washed once with 75% ethanol by centrifuging at 7,500 rpm for 5min at 2 to 8°C. RNA pellet was dried by vacuum-dry for 5 to 10min and finally dissolved in DEPC treated water and stored in -20°C.

cDNA preparation

After RNA isolation, RNA was immediately reverse transcribed with Easy Script PlusTM Reverse Transcriptase. For RT-PCR, 1-2μg of RNA was used corresponding to 1-10μl of total RNA isolate. RNA isolated from fresh tissue samples was reverse transcribed, where oligo-dT was used as a primer, into a 1.5ml eppendorf PCR tube, 1-2μg of RNA, 2μl of oligo-dT (stock was 10μM) was added and the total volume was made up to 12.5μl with DEPC treated water. The tube was incubated at 65°C for 5min and chilled on ice. Then, 4μl of 5X reverse transcriptase buffer (final concentration 1X), 2μl of 2mMdNTP mix (final concentration 0.2mM) and 0.5μl of RNase inhibitor (40U/μl) were added in the indicated order. After incubating at 42°C for 5min, 1μl of Easy Script Reverse Transcriptase (200 U/μl) was added. The reaction was carried out at 42°C for 50min. Finally, the tube was heated up to 70°C for 10min and chilled on ice. The samples were stored at -20°C until further use.

PCR

The cDNA obtained was amplified by PCR. Gene specific PCR was used to amplify Tnf. A constitutively expressed gene, namely GAPDH was selected in order to assess the quality of PCR. The primers for the study were purchased from Eurofins Genomics India Pvt Ltd., Bangalore, India. Anti-apoptotic gene expressions were studied using primers intF and intR primers(Table 1, 2 and 3). Amplification was carried out in a 20μl volume containing 0.3μM of each primer (Eurofins, India), 0.2mM deoxy nucleotide triphosphates (dATP, dCTP, dGTP and dTTP) (Biotools, Spain), 100ng of template DNA sample and 1U of Prime TaqDNA polymerase (Genetbio, Korea). The reaction tubes were subjected for thermal cycling reactions consisted of an initial denaturation (3min at 94°C) followed by 32 cycles of denaturation (30sec at 94°C), annealing (1min at 49°C) and extension (1min 20sec at 72°C), with a final extension (7min at 72°C). The procedure was repeated for GAPDH gene. PCR products were visualized using 1.5% agarose gel stained with EtBr (20mg/ml). The molecular weight of the bands was estimated using 1Kb DNA Ladder as reference.

Agarose Gel Electrophoresis of PCR Products

In a total volume of 25ml, 1.5% agarose and 1X TAE buffer were prepared and poured onto a gel tray. The PCR product was mixed with the loading dye. The mixture was loaded to each well along with 1kb ladder as a reference. The gel was run at 50V for 90min and visualized.

Expression folds calculation

Expression ratio was derived by analyzing the gel photos in software - Image J (Java based image processing). Expression ratio was obtained using the formula:

Target gene = gene expression / internal control x = 100

RESULTS AND DISCUSSION

In this study, the phagocytic activity of the CSEEwas tested on oxidative burst reduction of macrophages. The figure 1 shows that CSEE enhanced the NBT reduction at 10, 100, 500 and 1000 µg/ml by 5% (p < 0.01), 35% (p < 0.01), 55% (p < 0.01) and 65% (p < 0.01) respectively. The higher reduction in NBT assay represented higher activity of the oxidase enzyme reflecting the stimulation of phagocytes in proportion to the foreign particles ingested [15]. CSEE exhibited high phagocytic activity on the oxidative burst reduction, presenting intracellular killing and the enhancement of lysosomal enzyme activity, showing the active degranulation of macrophages. The maximum phagocytic activity of the extract on the NBT dye reduction was found and the % of NBT dye reduction was found to be 1000µg of CSEE, with an EC₅₀ value of 150mg/ml. Crocins, Crocus glycosides, exhibited an anti-inflammatory effect in some models of inflammation [18]. Flavonoids such as rutin, quercetin, luteolin, hesperidin and bioflavonoid produced significant antinociceptive and anti-inflammatory activities [19-21]. Flavonoids, tannins, anthocyanins, alkaloids and saponins exhibited antinociceptive effects in chemical pain test as well as acute and chronic anti-inflammatory activity [22, 23]. It was reported that tannins has an important role in antinociceptive and anti-inflammatory activities [24]. Phenolic compounds have been shown to possess antioxidant activity based on their (hydroxyl group) donation to free radicals. Moreover, phenolic compounds also possess a wide spectrum of biological activities such as antimutagenic, anticarcinogenic, anti-inflammation, anti-allergic, as well as the ability to modify gene expression[25-32]. The authors have had phytochemical study in CSEEandreported that C.sativusextracthas a rich amount of secondary metabolites like carbohydrates, tannins, saponins, flavonoids, alkaloids, quinones, cardiac glycosides, phenols, coumarins, phyto steroids, anthroquinones [33]. The anti-apoptotic activity related gene expression study results were well aligned with other researcher's findings with different extracts

(Musa paradisiaca, Vernoniaamygdalina, Melastomamalabathricum, Persea americana, Monopterusalbus and Channastraitus extracts) as well as secondary metabolites (syringin and scopoletin) [34-40]. Henceforth, these findings advocated that, the phagocytic mediated to macrophage-lymphocyte defense system may be due to the presence of some secondary metabolic active principle compounds present in the CSEE and it is responsible for intracellular killing more than degranulation. This property of *C. sativus* may be a safe and effective choice in the treatment of anti-inflammatory disorders. In future, studies should be carried out to pinpoint the mechanism of respective phytochemical both in an animal model and cell lines to exploit the medicinal potential of *C. sativus*. In the present study the plate 1 and 2displayed that the RT-PCR was made with Tnf and GAPDH gene specific primers to amplify. In the plate 1,Tnf gene was expressed in 1KB ladder of about 500bp was observed, in the photographic plate 2 and GAPDH gene was expressed in 1KB ladder of about 400bp. In this model, CSEE caused the suppression and subsequent expression of mRNA for tumor necrosis factor, interleukin. It has been demonstrated that CSEE possesses anti-apoptotic effects on non-cancerous cells which incorporate out it into a model showing a possible mechanism for the anti-cancer effect of saffron by promoting apoptosis, inhibiting cell proliferation and blocking inflammation in carcinomas by Tnf expressions. Tumour necrosis factor Tnf is a cytokine that has a wide variety of functions. It can cause cytosis of certain tumor cell lines; it is involved in the induction of cachexia; it is a potent pyrogen, causingfever by direct action or by stimulationof interleukin-1 secretion; it can stimulate cell proliferation induced cell differentiation under certain conditions. These findings indicate that saffron provides an anticancer protective effect by promoting cell death apoptosis and inhibiting proliferation of cancerous cells and blocking inflammation.

CONCLUSION

In supposition, these preliminary findings indicated that *C.sativus* can be a potential source of natural immunostimulator as well as an antioxidant agent. In addition, *CSEE* (Saffron stigma and petal) exhibit antinociceptive, anti-inflammatory activity, along with potential free radical scavenger and act as an important tool in cancer prevention. Further studies are warranted to isolate the active constituent from *C.sativus* for herbal preparations against oxidative stress, inflammation, cancer, ageing etc, and justifying their use in traditional medicine.

ACKNOWLEDGMENT

The authors would like to thankful to Mrs. Florida Tilton and Staff members of Biozone research technologies Lab, Chennai, India for providing laboratory facilities and technical assistance.

COMPETING INTRESTS

Authors have declared nil competing interest.

REFERENCES

- 1. N. Ingale, V. Maddi, M. Palkar et al., "Synthesis and evaluation of anti-inflammatory and analgesic activity of 3-[(5-substituted-1,3,4-oxadiazol-2-yl-thio)acetyl]-2H-chromen-2-ones," Medicinal Chemistry Research. 2012; 21(1): 16-26.
- 2. B. Rigas, "The use of nitric oxide-donating nonsteroidal anti-inflammatory drugs in the chemoprevention of colorectal neoplasia," Current Opinion in Gastroenterology. 2007; 23(1): 55-59.
- 3. M. Venerito, T. Wex, and P. Malfertheiner, "Nonsteroidal anti-inflammatory drug-induced gastroduodenal bleeding: risk factors and prevention strategies," Pharmaceuticals. 2010; 3(7): 2225-2237.
- 4. A.Lanas, L. A. García-Rodríguez, M. T. Arroyo et al., "Effect of antisecretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti-inflammatory

- drugs, antiplatelet agents, and anticoagulants," The American Journal of Gastroenterology. 2007; 102 (3): 507-515.
- 5. S. Prakash, B. N. Gupta, and N. S. H. Moorthy, "Synthesis and physicochemical characterization ofmutualprodrug of indomethacin," Trends in Applied Science Research. 2007; 2 (2): 165-169.
- 6. S. Egert and G. Rimbach, "Which sources of flavonoids: complex diets or dietary supplements?" Advances in Nutrition. 2011; 2 (1); 8-14.
- 7. Kyselova, "Toxicological aspects of the use of phenolic compounds in disease prevention," Interdisciplinary Toxicology. 2011; 4(4): 173-183.
- 8. Plessner, O., Negbi, M., Ziv, M and Basker, D. Effects of temperature on the flowering of the saffron crocus (*Crocus sativus* L.): Induction of hysteranthy. Israel J. Bot. 1989; 38: 1-7.
- 9. Giaccio M. Components and features of saffron. Proceedings of the International Conference on Saffron, (ICS'90), Italy. 1990; 135-148.
- 10. Winterhalter, P and Straubinger, M. Saffron-renewed interest in an ancient spice. Food Rev. Int. 2000; 16: 39-59.
- 11. Abdullaev, F. Crocus sativus against cancer. Arch. Med. Res; 2003; 34: 354-354.
- 12. Abdulnabi, A. A., Emhemed, A. H, Hussein, G. D. and Biacs, P. A. Determination of antioxidant vitamin in tomatoes. Food Chemistry. 1997; 60: 207-212.
- 13. Hartwell, J.L., 1982. Plants Used Against Cancer: A Survey. Quaterman Publications, Lawrence, CA.Himeno, H. and K. Sano. Synthesis of crocin, Picrocrocin and safranal by saffron stigma-like structures proliferated *in vitro*. Agric. Biol. Chem. 1987; 51: 2395-2400.
- 14. Aqil F and Ahmad I. Antibacterial properties of traditionally used Indian medicinal plants. Methods Find Exp. Clinical Pharmacology. 2007; 29 (2): 79-92.
- 15. Rainard, P. A colorimetric microassay for opsonins by reduction of NBT in phagocytosing bovine polymorphs. Journal of Immunological Methods. 1986; 90: 197-201.
- 16. Chomczynski P and Sacchi N Single-step method of RNA-isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction, *Annual biochemistry*; 1987;162:156-9.
- 17. Narumi. Neurochemistry Research. 1987: 12 (4).
- 18. Ma S., Zhou S., Shu, B and Zhou, J. Pharmacological studies on *Crocus* glycosides I. Effects on anti-inflammatory and immune function. *Zhongcaoyao*. 1998;29: 536-539.
- 19. Bittar, M, de Souza M.M., Yunes, R.A., Lento, R., DelleMonache F., CechinelFilho V. Antinociceptive activity of I3, II8-binaringenin, a biflavonoid present in plants of the guttiferae. *Planta Med.* 2000;66: 84-86.
- 20. Galati E.M., Monforte M.T., Kirjavainen S., Forestieri, A.M., Trovato, A., Tripodo, M.M. Biological effects of hesperidin, a citrus flavonoid. (Note I): anti-inflammatory and analgesic activity. *Farmaco*. 1994;40: 709-712.
- 21. Ramesh M., Rao, Y.N., Rao, A.V., Prabhakar, M.C., Rao, C.S., Muralidhar, N., Reddy, B.M. Antinociceptive and anti-inflammatory activity of a flavonoid isolated from *Carallumaattenuata*. *J. Ethnopharmacol.* 1998;62:63-66.
- 22. Hosseinzadeh, H and Khosravan, V. Anticonvulsant effects of aqueous and ethanolic extracts of *Crocus sativus* L. stigmas in mice. Arch. Iran Med. 2002a; 5: 44-47.
- 23. Hosseinzadeh, H. and Younesi, H.M. Antinociceptive and anti-inflammatory effects of *Crocus sativus* L. stigma and petal extracts. BMC. Pharmacol. 2002b; 2: 7.
- 24. Starec, M., Waitzov'a, D., Elis, J. Evaluation of the analgesic effect of RG-tannin using the "hot plate" and "tail flick" method in mice. *Cesk Farm.* 1988;37:319-321.
- 25. Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. *J. Univ. Chem. Technol. Metall.* 2005;40: 255-260.

- 26. Ibrahim, M.H.; Hawa, Z.E.J. Carbon dioxide fertilization enhanced antioxidant compounds in Malaysian Kacip Fatimah (*LabisiapumilaBlume*). *Molecules*. 2011;16: 6068-6081.
- 27. Ibrahim, M.H.; Jaafar, H.Z.E. Enhancement of leaf gas exchange and primary metabolites, up-regulate the production of secondary metabolites of *LabisiaPumilaBlume* seedlings under carbon dioxide enrichment. *Molecules*; 2011; (16): 3761-3777.
- 28. Ibrahim, M.H.; Jaafar, H.Z.E. Photosynthetic capacity, photochemical efficiency and chlorophyll content of three varieties of *Labisiapumila*Benth. Exposed to open field and greenhouse growing conditions. *Acta Physiol. Plant*; 2011; (33): 2179-2185.
- 29. Ibrahim, M.H.; Jaafar, H.Z.E. The influence of carbohydrate, protein and phenylanine ammonia lyase on up-regulation of production of secondary metabolites (total phenolics and flavonoid) in *Labisiapumila*(Blume) Fern-Vill (Kacip Fatimah) under high CO2 and different nitrogen levels. *Molecules*. 2011; (16): 4172-4190.
- 30. Ibrahim, M.H.; Jaafar, H.Z.E. The relationship of nitrogen and C/N on secondary metabolites and antioxidant activities in three varieties of Malaysia Kacip Fatimah (*Labisiapumila*Blume). *Molecules*. 2011; (16): 5514-5526.
- 31. Ibrahim, M.H.; Jaafar, H.Z.E.; Haniff, M.H.; Raffi, M.Y. Changes in growth and photosynthetic patterns of oil palm seedling exposed to short term CO2 enrichment in a closed top chamber. *Acta Physiol. Plant.* 2010; (32): 305-313.
- 32. Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Zaharah, A.R. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of Kacip Fatimah (*Labisiapumila*Blume). *Int. J. Mol. Sci.* 2011; (12): 5238-5254.
- 33. Arirudran, B, Thenmozhi, A, Priyadharshini. P. Evaluation of preliminary phytochemicals and antioxidant efficacy of Crocus sativus L. *International Journal of Pharmaceutical Research and Development*. 2014; 5(12): 1-8.
- 34. U.S MahadevaRao, Bashir Ado Ahmad, KhamsahSuryatiMohd. In vitro nitric oxide scavenging and anti inflammatory activities of different solvent extracts of various parts of Musa paradisiaca. Malaysian Journal of Analytical Sciences. 2016; 20(5): 1191 1202. DOI: http://dx.doi.org/10.17576/mjas-2016-2005-26
- 35. USMR, Zin T. The effect of Syringin on the expression of TNF-α, iNOS, ICAM-1 and its' mRNA in the heart, brain and kidneys of spontaneously hypertensive rats. Der Pharmacia Lettre. 2016; 8(3):53-61.
- 36. MohdAdzimKhaliliRohin, NorhaslindaRidzwan, MimieNoratiqahJumli, NorhayatiAbdHadi, NapisahHussin, MohdNizamZahary, Syed Ahmad Tajudin Tuan Johari, MahadevaRao US, and Ahmad Zubaidi A. Latif. Screening Of Bismillah Leaf (VernoniaAmygdalina) Extraction ForAntiproliferativeActivies In Human Glioblastoma Brain Cancer Cell Lines. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(2):1084-89.
- 37. C. ShanmugaSundaram, U. S. MahadevaRao and NordinSimbak. Regulatory Efficacy Of Scopoletin, A Biocoumarin On Aortic OxidoLipidemic Stress Through Antioxidant Potency As Well As Suppression Of mRNA Expression Of iNOS Gene In Hypercholesterolemic Rats. Der Pharmacia Lettre. 2015; 7 (10):57-67
- 38. Suleiman Danladi, Amirah Wan-Azemin, YahayaNajibSani, KhamsahSuryatiMohd, USMR, Sharif MahsufiMansor, SaravananDharmaraj. Phytochemical Screening, Antioxidant Potential And Cytotoxic Activity Of MelastomaMalabathricum Linn. From Different Locations. Int J Pharm Pharm Sci. 2015; 7(7): 408-413.
- 39. AB Atif, MK Zahri, AR Esa, BA Zilfalil, USM Rao, S Nordin. Comparative analysis of the antibacterial, antifungal, antiproliferative and cyclic response element (CRE) induced expression of downstream luc gene activities of Monopterusalbus and Channastraitus extracts. Journal of Applied Pharmaceutical Science. 2015; 5 (1):42-47. DOI: http://dx.doi.org/10.7324/JAPS.2015.50108
- 40. USMR, Kumar Ponnusamy, JegathambigaiRameshwar Naidu, C. S. SundaramModulatory Influence of Avocado on Renal OxidoLipidemic Stress and mRNA

Expression of NOS in Renal Artery Studied in Nephropathy Induced Rats. International Medical Journal (Japan) 2014; 21(3):353–58.

Table 1: Sequence of the primer used in the RT-PCR

Tnf F	5' ATGATGGATCTTGAGAGTCAG 3'
Tnf R	5' TCATAAAGCAAACACCCCAAAGAA 3'
GAPDH Forward	5` TCCCATCACCATCTTCCA 3`
GAPDH Reverse	5` CATCACGCCACAGTTTCC 3`

Table 2: PCR reaction setup for GAPDH and Tnf genes

	Stock	Final	Final Volume (for
	Concentration	Concentration	20μl)
Mili Q Water	-	-	11.4μ1
Taq Buffer (with MgCl ₂)	10X	1X	2μl
dNTPs	2mM	0.2mM	2μl
MgCl ₂	25mM	2.5mM	2μl
Primer-Forward	3nM	0.3μΜ	0.2μ1
Primer-Reverse	3M	0.3μΜ	0.2μl
Template cDNA	-	10% of the reaction	2μl
Taq Polymerase	5U/μl	10	0.2μl

Table 3: PCR reaction conditions for GAPDH and Tnf genes

• 0	Tnf	GAPDH
Initial denaturation	94°C for 2min	94°C for 2min
Denaturation	94°C for 30sec	94°C for 30sec
Annealing	56°C for 1min	53°C for 1min
Extension	72°C for 1min 20sec	72°C for 1min 20sec
Final extension	72°C for 7min	72°C for 7min
Hold	4°C	4°C
Total number of cycles	32	32

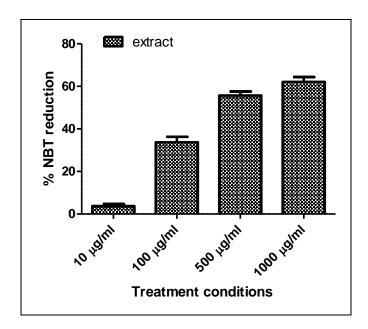


Figure 1: Anti-inflammatory activity for Crocus sativus ethanolic extract.

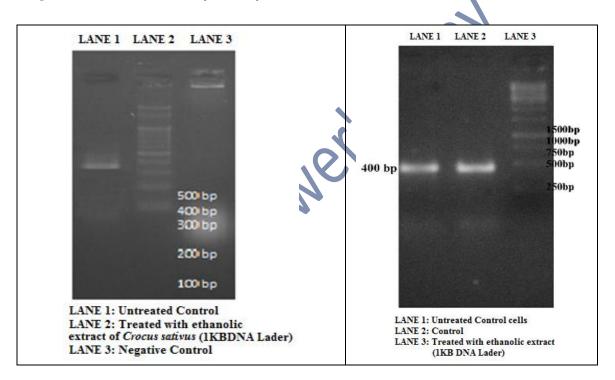


Plate 1: Expression of Tnf genePlate 2:Expression of GAPDH gene