Review Article

Traditional to Recent Approaches in Herbal Medicine Therapy of COVID-19

ABSTRACT

The novel coronavirus pneumonia that broke out and invaded the whole world since 2019 where deaths reached millions. Still, no vaccine is available, therefore, developing effective programs for therapy is of high priority. Chinese herbal medicine has succeeded in the treatment of other coronavirus pneumonia such as SARS, MERS and, avian influenza which gives us hope to find the targeted remedy in the natural herbs consumed by natives from different regions. This work aims to provide a documented data base and highlight the use of natural traditional remedies in the treatment of COVID-19 and other related viruses. Although promising results were obtained in many cases, few studies reported the characterization of bioactive principles and/or mechanisms. It is requested that pharmaceutical industries and the scientific community focus on some of these plants for future research to discover a promising effective drug for the development of anti-SARSCoV-2 therapeutics soon.

Keywords: COVID-19, Traditional Medicine, SARS, Influenza, Rhinovirus, pneumonia.

INTRODUCTION

Viruses are considered as a reason for many ailments that affect humans worldwide. Most of these ailments are very complex and hard to cure, these viruses include coxsackievirus (CV), dengue virus (DENV), enterovirus 71 (EV71), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus, human immunodeficiency virus (HIV), influenza virus, measles virus (MV), and respiratory syncytial virus (RSV) in addition to coronavirus [1]. Coronavirus (COVID-19), pandemic 2019, is considered a newly recognized strain of coronavirus that causes severe illness varying from symptoms like flu and reaches to be fatal in a considerable percentage of people across the world[1]. This represents a global challenge as cases are increasing rapidly especially critical cases with pneumonia. Recently, over 81,000 cases have been confirmed, with over 2700 deaths [2]. The mortality rate is around 2%, most of them need ICU admission while about 20.1 % developed acute respiratory distress syndrome[2]. Therefore, there is an urgent demand to find a quick protocol and strategy for therapy for mild and severe cases. Herbal medicines and purified natural products provide a rich resource for novel remedies where some antiviral drugs have been developed and used in many herbal preparations for therapy. In China, traditional Chinese medicine was widely used and has already played an important role during SARS-CoV and SARSCoV2 outbreak[3]. Besides, there are some herbal formulae following the Chinese guidelines in terms of the composition of herbs for the treatment of pediatric COVID-19[4]. However, the herbs used frequently in the proposed herbal formulae for the treatment of pediatric COVID-19 lack diversity in comparison to that of the adults[4]. In the recommendations on adult treatment for COVID-19, the herb Glycyrrhizaeroot and rhizome was one of the highest frequency used herbs[4]. There is also an extensive dependenceon traditional medicine in Africa [5] and India [6] and many of them were related to SARS-CoV therapy. This review aimed to systematically summarize and analyze the herbs that have been traditionally used in the treatment of coronavirus and some related diseases in many regions of the world to try to participate in finding a suitable therapy for this fatal virus.

METHODOLOGY

Database searches using PubMed, Elsevier, Scopus, Google Scholar and Web of Science were conducted till 10th June 2020 to include up-todate documented information in the present review article. For mining data, the following MESH words were used in the databases mentioned above: traditional herbal medicinal plants for COVID-19, antiviral effects of coronavirus, Chinese herbal medicine, natural products for coronavirus, as well as recently reported mechanisms of action were all gathered from the online bibliographical databases.

DISCUSSION

Since there are no treatments specific for CoV infection and the production of a preventive vaccine is still under investigation. Thus, comes the urgent need to produce effective antivirals for prophylaxis and effective treatment of CoV infection to try to reduce the mortality it causes. The exploration of already used therapies in the treatment of this epidemic resembles a quick way to overcome this situation. This study will include a wide overall survey for the effects of traditional herbal medicine, some herbal formulae including their ingredients in addition to recent approaches for the herbal treatment of COVID-19. The use of traditional herbal medicine for the prevention or treatment of this novel viral infection including pneumonia will be investigated. Our research was extended to include most herbs used in this aspect in most regions of the world to provide a collective review with all data required in this field. In searching for the traditionally used therapies some Chinese formulae were found listed in (Table 1) that seem to be effective [7]. It was found that *Glycyrrhizae* spp. root and rhizome is considered as one of the most used herbs in several herbal formulas followed by *Scutellariae* root and rhizome then come *Rheum* spp. and other herbs listed. These formulas were used for the treatment of several symptoms of some patients of COVID-19 as high fever and diarrhea syndromes [7].

It was declared at a press conference in April 2020 by a Chinese official that three patent drugs of herbal constituents were approved for the treatment of COVID-19 manifestations. These include Xuebijing injections when the cases are severe in addition to Jinhuaqinggan granules and Lianhuaqingwen capsules indicated for moderate cases. After this approval, these drugs were propagated and widely used in China for the treatment of COVID-19. It was stated that these patents relieve some symptoms as fever, cough, fatigue also it decreases the risk that these cases develop to be severe but no other details were added [8].

Glycyrrhizae Radix et Rhizoma is considered from the highly effective herbs widely used whatever is the stage of infection. It is approved by the China Food and Drug Administration (SFDA) as antiviral herbal therapy. Its mechanism was reported by many studies as it inhibits attachment, entry, and replication of the virus which was earlier used in treating SARS[9, 10]. In addition, Glycyrrhizae Radix et Rhizoma possesses an anti-inflammatory effect which is usefulin the treatment of lung inflammatory cases associated with COVID-19 [4, 11].

In the Korean guidelines, an herbal formula called Qingfei Paidu Tang was recommended for the treatment of severe conditions of COVID-19 as well as its recommendation by the national Chinese guidelines for diagnosis and treatment. This formula consists of (*Ephedrae* Herba 9g, *Glycyrrhizae* Radix et Rhizoma 6g, *Armeniacae* Semen *amarum* 9g, *Gypsum fibrosum* 15~30g, *Cinnamomi ramulus* 9g, *Alismatis* Rhizoma 9g, *Polyporus* 9g, *Atractylodis macrocephalae* Rhizoma 9g, *Poria sclerotium* 15g, *Bupleuri* Radix16g, *Scutellariae* Radix 6g, *Pinelliae* Rhizoma 9g, *Zingiberis* Rhizoma Recens 9g, *Asteris* Radix 9g, *Farfare* Flos 9g, *Belamcandae* Rhizoma 9g, *Asari* Herba 6g, *Dioscoreae* Rhizoma

12g, Aurantii fructus 6g, Citri unshius Pericarpium 6g and Agastachis Herba 9g). Recently, it was reported by [12], that this formula boosts immunity and decreases inflammation through its effect on the lung and spleen which are considered the pathways of COVID-19. In addition, the Korean guidelines removed the Farfarae Flos herb due to its safety and toxicity [4].

Ang *et al*, presentedseveral herbal formulas used in traditional medicine for pediatric COVID-19 cases (Table 2). They mentioned 13 herbal formulas approved by the Chinese guidelines which consist totally of 56 herbs. According to the authors, clusters of herbal pairs were used *Artemisiaeannuae* herb and *Scutellariae* root in a cluster, *Armeniacae* seeds, and *Coicis* seeds in another and *Ephedrae* with *Gypsum fibrosum*. [13].

In Africa, traditional medicine play an important role in providing care to populations. Medicinal herbal plants as *Artemisia annua* are considered as one of the possible treatments for COVID-19 where efficacy and adverse side effects should be tested for. The WHO recommended testing herbs for their efficacy and safety before traditional practice through rigorous clinical trials is critical [14], at the meanwhiletraditional medicine continues to be widely used across Africa. President Rajoelina stated that 80% of Madagascar's population uses 'COVID Organics' [15]. A biochemist researcher in traditional medicine at North-West University in South Africa, Professor Chrisna Gouws, reported about the use of *Artemisia annua* in herbal medicine "It's a very popular herbal medicine. It's one of the most frequently used herbs in parts of the world. The scientific community became interested because it contains artemisinin, which is a recognized anti-malarial treatment" [15].A state of art, The Max Planck Institute of Colloids and Interfaces, Potsdam (Germany) will collaborate with ArtemiLife Inc., a US based company and medical researchers in Denmark and Germany to test *Artemisia annua* extract and artemisinin derivatives in laboratory cell studies against the novel coronavirus Sars-CoV-2 [16].

Furthermore, there are severalmedicinal plants and manysecondary metabolites that were reported effective against viral respiratory tract infections. For example, (Table 3) explains some of medicinal plants that possessed antiviral activity against different coronavirus types and their possible mechanism of actions. While (Tables 4 and 5) included various herbal medicines and different secondary metabolites whichreported to haveactivity against causes of viral respiratory infection, specially corona virus. Among these plants, the Lamiaceae family herbs, which have a completely different chemistry, primarily monoterpenoids. According to [17] Salvia apiana (white sage), S. officinalis (garden sage), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), and Prunella vulgaris (heal-all) are among the many other mints with antiviral and other beneficial effects relevant to viral respiratory infections. Generally, these are received well by patients based on taste [17]. Trees from two evergreen families, the Pinaceae and Cupressaceae, make up another family groups of antivirals. *Pinus spp.* (pine), Abies spp. (true firs), *Picea spp.* (spruces), *Thuja spp.* (cedars), and Juniperus spp. (junipers) resin and branch tips are all antiviral and inflammatory modulators with a respiratory tract affinity. All these groups are inflammation modulators, which is important for two reasons. The symptoms of viral respiratory infections are significantly due to immune responses to the infecting virus. More importantly, severe influenza is in part due to what has been dubbed "cytokine storm": a hyper-reaction of the immune system to certain influenza strains. Thus, inflammationmodulating herbs are significant to decrease symptoms and to prevent severe consequences, at least in the case of influenza infection. Additionally, these herbs considerably have immune-stimulating effects, running the risk of rising symptoms of viral respiratory infections or making cytokine storms worse [17].

In India, Balachandar and his colleagues reported a strategy to develop an efficient viral inactivation system by exploiting active compounds from naturally occurring medicinal plants and infusing them into nanofiber-based respiratory masks. They listed some of the Indian medicinal plants (Table 6) that could be used as potentantiviral agents [18]. Moreover, Thangadurai *et al.* reported that Siddha or Ayurvedha traditional medicine validated a polyherbal formulation Deva chooranam (DC) with proven preclinical safety and activity against HIV and may have possible activity for the prevention and management of 2019-nCoV infection. This herbal formula includes three medicinal herbs: *Cedrus deodara* (Devadaru), *Alpinia galanga* (Arathai) and *Cinnamomum tamala* (Lavanga pathiri)[19].

Recent approaches for corona virus treatment

Recently, a study reported by Ren *et al* indicated that, among 96606 classical prescriptions, 574 prescriptions with the key words to treat "Warm diseases (Wenbing)", "Pestilence (Wenyi or Yibing)" or "Epidemic diseases (Shiyi)" were obtained [7]. Meanwhile, 40 kinds of Chinese Medicines (CMs), 36 CMs-pairs, 6 triple-CMs-groups existed with high frequency among the 574 prescriptions. Also, the key targets of SARS-COV-2, namely 3CL hydrolase (Mpro) and angiotensin-converting enzyme 2(ACE2), were used to dock the main constituents from the 40 kinds by the Ligand FitDock method. A total of 66 compounds with higher frequency were docked with the COVID-19 targets, which were distributed in 26 kinds of CMs, among which Gancao(*Glycyrrhizae* Radix et rhizoma), HuangQin (*Scutellariae* radix), Dahuang(*Rhei* radix et rhizome) and Chaihu(*Bupleuri* radix) contain more potential compounds. As well, the network pharmacology results showed that Chinese medicine pairs Gancao(*Glycyrrhizae* radix et rhizoma) and HuangQin (*Scutellariae* radix)could interact with the targets involving in immune and inflammation diseases [7].

Another study carried out by chen et al, stated that two main proteins, 3C-like protease (3CLpro) and angiotensin-converting enzyme 2 (ACE2), could be used as targets for in silico screening active constituents that stops the replication and proliferation of SARS-COV-2, benefit from rapid sequencing of SARS-COV-2 coupled with molecular modelling depending on the genomes of related viral proteins[20, 21]. Owis et al, reported that ten flavonoids that were isolated from Salvadora persica L. aqueous extract showed remarkable binding stability at the N3 binding site of main protease of the COVID-19 to different degrees when compared with the currently used darunavir, a COVID-19 main protease inhibitor. The isolated and identified flavonoids were similar in structure which gave the opportunity to deduce the relation between their structure and the affinity to the receptors of the N3 binding site. The results indicated that the basic flavonol as a nucleus itself possesses an activity, in addition, the presence of rutinose in position 3 in this nucleus and the lack of O-CH₃ group in ring B may be a reason to increase the binding stability[22]. According to Khattab et al., cathepsins and furin, may be used for developing broad-spectrum anti-SARS CoV therapies which target multiple viral and non-viral proteins [23]. A recent study by Qamar and his colleagues analyzed the 3CLpro sequence of CoV-19, constructed its 3D homology model, and screened it against a medicinal plant library containing 32,297 potential anti-viral phytochemicals/ traditional Chinese medicinal compounds and selected the top nine hits that may inhibit SARS-CoV-2 3CLpro activity and hence virus replication [24]. These compounds were 5,7,3',4'-Tetrahydroxy-2'-(3,3- dimethylallyl) isoflavone, myricitrin, methyl rosmarinate, 3,5,7,3',4',5'-hexahydroxy flavanone-3-O-β- D-glucopyranoside, (2S)-eriodictyol 7-O-(6"-O-galloyl)- β -Dglucopyranoside, calceolarioside B, myricetin 3-O- β -D-glucopyranoside, licoleafol and amaranthin with docking scores -16.35, -15.64, -15.44, -14.42, -14.41, -14.36, -13.70, -13.63 and -12.67, respectively, compared to nelfinavir (-12.20), prulifloxacin (-11.32) and colistin The screened phytochemicals displayed higher docking scores, stronger binding energies, (-11.73).

and closer interactions with the conserved catalytic dyad residues (Cys-145 and His-41) than nelfinavir, prulifloxacin and colistin [24].

Conclusion:

From the above reviewed studies, it is evident that different countries around the world have abundance of antiviral plants resources based on scientific findings. There are several medicinal plants traditionally used by the local people of many countries all over the world to treat coronavirus. However, there is a great deficiency to find enough studies considering the chemistry and pharmacological effects of these herbal plants. Therefore, carrying detailed ethnomedicinal studies is of great demand to discover novel active principles with promising activity against this fatal virus. Besides, very few herbs have been screened *in vitro* and *in vivo* against viruses including coronavirus, so,pharmaceutical industries and/or government agencies should support more research activities in this area in order to utilize these antiviral medicinal plants for a solution against the global fatal illness (COV-19) or any threaten viral infections.

Conflicts of interest

The authors have no conflicts to report.

Disclosure statement

The study had no ethical approval requirements.

Table 1:List of some Formulas used in Traditional Chinese Medicine for COVID-19

No.	Chinese Name	Plant Latin name	Part used
		Glycyrrhiza uralensis Fisch	
1	Gancao	Glycyrrhiza inflata Batalin	Rhizome
		Glycyrrhiza glabra L.	
2	Huangqin	Scutellaria baicalensis Georgi	Root
		Rheum palmatum L.	
3	Dahuang	Rheum tanguticum Maxim. ex Balf.	Rhizome
		Rheum officinale Baill.	
4	Baishao	Paeonia lactiflora Pall.	Root
5	Chenpi	Citrus reticulata Blanco	Fruit
6	Chaihu	Bupleurum chinense DC.	Root
		Bupleurum scorzonerifolium Willd	
7	Jiegeng	Platycodon grandiflorus (Jacq.) A.DC	Root
8	Cangzhu	Atractylodes lancea (Thunb.) DC. Atractylodes	Rhizome
		chinensis (DC.) Koidz	
9	Danggui	Angelica sinensis (Oliv.) Diels	Root
10	Shengdi	Rehmannia glutinosa (Gaertn.) DC	Root
11	Shigao	Gypsum	
12	Gegen	Pueraria lobata (Willd.) Ohwi	Root
13	Houpu	Magnolia officinalis Rehder & E.H.Wilson Magnolia	Bark
		officinalis var. biloba Rehder & E.H.Wilson	
14	Chuanxiong	Ligusticum chuanxiong Hort.	Root

I5	Fangfeng	Saposhnikovia divaricata (Turcz.) Schischk.	Root
16	Sbexiang	Moschus berezovskii Flerov.	Musk bag
		Moschus sifanicus Przewalski	
17	TT 1'	Moschus moschiferus Linnaeus	DI.
17	Huanglian	Coptis chinensis Franch.	Rhizome
		Coptis deltoidea C.Y.Cheng et Hsiao	
18	Oionahuo	Coptis teeta Wall. Notopterygium incisum K.C.Ting ex H.T.Chang	Rhizome
18	Qianghuo	Notopterygium franchetii H.Boissieu	Kilizoille
19	Xuanshen	Scrophularia ningpoensis Hemsl.	Root
20	Baizhi	Angelica dahurica (Hoffm.) Benth. & Hook.f. ex	Root
20	Daizin	Franch. & Sav.	Root
21	Renshen	Panax ginseng C.A.Mey.	Root
22	Xionghuang	Realgar	
23	fuling	Poria cocos(Schw.)Wolf	Scleroaum
24	Zhiqiao	Citrus aurantium L.	Fruit
25	Maidong	Ophiopogon japonicus (Thunb.) Ker Gawl.	Root
26	Jiangcan	Beauveria assiana(Bals.)Vuillant	Silkwormbod
			y
27	Lianqiao	Forsythia suspensa (Thunb.) Vahl	Fruit
28	Zhimu	Anemarrhena asphodeloides Bunge	Rhizome
29	Banxia	Pinellia ternata (Thunb.) Makino	Rhizome
30	Bohe	Mentha haplocalyx Briq.	Stem
31	Zhusha	Cinnabar	
32	Shengma	Cimicifuga heracleifolia Kom.	Rhizome
		Cimicifuga dahurica (Turcz.) Maxim. Cimicifuga	
		foetida L.	_
33	Mahuang	Ephedra sinica Stapf	Stem
		Ephedra intermedia Schrenk & C.A.Mey. Ephedra	
2.4		equisetina Bunge	
34	Zhizi	Gardenia jasminoides J. Ellis	Fruit
35	Chantui	Cryptotympana pustulata Fabricius	ъ.
36	Tianhuafen	Trichosanthes kirilowii Maxim. Trichosanthes	Root
27	Chanaliana	rosthornii Harms	Dhiroma
37	Shengjiang Xixin	Zingiber officinale Roscoe	Rhizome Rhizome
38	AIXIII	Asarum sieboldiiMiq. Asarum heterotropoides F.Schmidt	KIIIZUIIIE
39	Huashi	Talcum	
40	Huoxiang	Pogostemon amaranthoides Benth.	Stem
	Tuoniding	1 050stemon anaramnomes Deliti.	Stelli

Table2: Chinese herbal medicines recommendation for pediatric COVID-19

Stages	Name of herbal	Pattern	Composition of herbal formula
	formula	Identification	
Mild	Yin Qiao San	Seasonal epidemic	*Lonicerae Flos, Forsythiae fructus, Platycodonis Radix, Menthae Herba, Lophatheri Herba, Schizonepetae spica, Glycine Semenpreparatum, Arctii Semen, Phragmitis Rhizoma
Mild	Xiang Su San	invading the exterior-defense	Cyperi Rhizoma, Perillae folium, Citrireticulatae Pericarpium, Glycyrrhizae Radix et Rhizoma, Bupleuri Radix, Cinnamomi ramulus, Saposhnikoviae Radix, Osterici seu notopterygii Radix et Rhizoma
Moderate	Ma Xing Shi Gan Tang + San Ren Tang	Dampness-heat blocking the lung	# Ephedrae Herba, Armeniacae Semen amarum, Glycyrrhizae Radix et Rhizoma, Gypsum fibrosum, Amomi Fructus rotundus, Coicis Semen, Pinelliae Rhizoma praeparatum, Magnoliae Cortex, Talcum, Stachyuri Medulla, Helwingiae Medulla, Lophatheri Herba
	Buhuan Jin Zhengqi San	Dampness-heat in the spleen and stomach	** Citri Reticulatae Pericarpium, Atractylodis Rhizoma, Magnoliae Cortex, Glycyrrhizae Radix et Rhizoma, Amomi tsao-koFructus, Pinelliae Rhizoma, Agastachis Herba
Severe	Xuanbai Chengqi Tang + Ganlu XiaoduDan	Heat toxin blocking the lung	**Gypsum fibrosum, Rhei Radix et Rhizoma, Armeniacae Semen amarum, Trichosanthis fructus, Talcum, Scutellariae Radix, Artemisiae scopariae Herba, Acori tatarinowii Rhizoma, Fritillariae cirrhosae Bulbus, Akebiae caulis, Agastachis Herba, Forsythiae fructus, Amomi fructus Rotundus, Menthae Herba, Belamcandae Rhizoma
	Not available	Intense heat toxin with blockage of bowel Qi and dysphagia	Rhei Radix et Rhizoma (Enema using herbal decoction)
Recovered	Liu Junzi Tang + Yu Ping Feng San	Unclear residual heat	* Ginseng Radix, Atractylodis macrocephalae Rhizoma, Poria sclerotium, Glycyrrhizae Radix et Rhizoma, Citri reticulatae Pericarpium, Pinelliae Rhizoma, Saposhnikoviae

			Radix, Astragali Radix	
			Ephedrae Herba 4g, Gypsum fibrosum 20g,	
	Ma Xing Shi Gan	Heat toxin	Anemarrhenae Rhizoma 9g, Armeniacae Semen amarum	
	Tang*	fettering the lung	10g, Coicis Semen 10g, Phragmitis Rhizoma 10g,	
			Platycodonis Radix 6g, Mori radicis Cortex 10g,	
			Lonicerae Flos 10g	
			Ephedrae Herba 4g, Gypsum fibrosum 20g,	
	Ma Xing Shi Gan	Epidemic toxin	Anemarrhenae Rhizoma 9g, Armeniacae Semen amarum	
	Tang*	blocking the	10g, Coicis Semen 10g, Trichosanthis fructus 10g, Rhei	
		lung	Radix et Rhizoma 5g, Mori radicis Cortex 10g, Lepidii	
			seu descurainiae Semen 6g, Bubali cornu10g, Pheretima	
			10g, Ginseng Radix 6g	
	Yin Qiao San	Wind-heat	Lonicerae Flos 15g, Forsythiae fructus15g, Schizonepetae	
		invading the	spica 10g, Menthae Herba 10g, Arctii Semen 10g,	
		lung	Platycodonis Radix 10g, Scutellariae Radix 10g,	
			Trichosanthis pericarpium 15g, Angelicae decursivae	
			Radix 15g, Belamcandae Rhizoma 10g, Eriobotryae	
			folium 15g, Artemisiae annuae Herba 21g	
	Ma Xing Shi Gan	Wind-heat	Ephedrae Herba 5g, Armeniacae Semen amarum 10g,	
	Tang	blocking the	Gypsum fibrosum 15g, Scutellariae Radix 10g,	
		lung	Trichosanthis pericarpium15g, Angelicae decursivae	
			Radix 15g, Belamcandae Rhizoma 10g, Eriobotryae	
Not reported			folium 15g, Pumex 20g, Lepidii seu descurainiaeSemen	
			10g, Pheretima 10g, Artemisiae annuae Herba 21g	
	Qianjin Weijing	Dampness-heat		
	Tang + Shangjiao	fettering the lung	Coicis semen 15g, Armeniacae Semen amarum 10g,	
	Xuanpi Tang		Scutellariae Radix10g, Trichosanthis pericarpium 15g,	
		.0.	Angelicae decursivae Radix 15g, Belamcandae Rhizoma	
			10g, Eriobotryae folium 15g, Curcumae longae Radix 15g,	
			Lepidii seu descurainiae Semen 10g, Artemisiae annuae	
			Herba 21g	
	San Ren Tang	Dampness-heat	Armeniacae Semen amarum 10g, Amomi fructus	
		fettering the	Rotundus 5g, Coicis semen 15g, Pinelliae Rhizoma	
		spleen	praeparatum 10g, MagnoliaeCortex 15g, Talcum 10g,	
			Stachyuri Medulla Helwingiae Medulla 5g, Agastachis	
			Herba 10g, Poria sclerotium 15g, Arecae pericarpium	
			15g, Scutellariae Radix 10g, Artemisiae annuae Herba	
* NT	£4h a la aula -1 £ 1	ia aniainall 4	21g ported, and the authors named them based on	

^{*} Name of the herbal formula is originally not reported, and the authors named them based on Dictionary of Traditional Chinese Medicine Formula.

[#] The compositions of the herbal formula is originally not reported, and the authors added them based on Dictionary of Traditional Chinese Medicine Formula

Table 3:Medicinal plants reported in the treatment of COVID-19and their mechanism of action

Plant name	Responsive virus	Mechanism of action	References
Rosa nutkanaC.Presl	Corona virus (CoV)	The extract was very active against an enteric corona virus	[25]
Amelanchier alnifolia(Nutt.) Nutt. ex M.Roem.	Corona virus (CoV)	The extract was very active against an enteric corona virus	[25]
<i>Houttuynia</i> cordataThunb.	SARS-CoV	It inhibited two key proteins of SARS- CoV, namely chymotrypsin-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp) -It increased CD4+ and CD8+ cell count in test animals suggesting its immunestimulatory effect	[26]
Toona sinensis(Juss.) M.Roem.	SARS-CoV	It inhibited SARS-CoV replication	[27]
Rheum officinaleBaill., Polygonum multiflorumThunb.	SARS-CoV	inhibited the interaction of SARS-CoV (S) protein and ACE2	[28]
Cibotium barometz(L.) J.Sm.and Dioscorea batatasDence.	SARS-CoV	significant inhibition of SARS-CoV 3CLpro activity	[29]
Extracts of (Anthemis hyaline DC., Nigella sativaL., and Citrus	CoV	They decreased the replication of virus. They inceased IL-8 level. They significantly	[30]

sinensis(L.) Osbeck)		changed the expression of TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 genes.	
<i>Isatis indigotica</i> Fortune ex Lindl.	CoV	3CL protease inhibition	[31]
<i>Houttuynia</i> cordataThunb.	CoV	3CL protease and viral polymerase inhibition.	[26]
Extracts of (Gentiana scabraBunge,Dioscore a batatasDence., Cassia toraL., Taxillus chinensis(DC.) Danser, Cibotium barometz(L.) J.Sm.)	CoV	3CL protease inhibition.	[29]
Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma and Phellodendron cortex	mouse hepatitis virus A59 (MHV- A59)	They decreased the MHV production and the intracellular viral RNA and protein expression with EC ₅₀ values ranging from 2.0 to 27.5 g/ml. These extracts also significantly decreased PEDV production and less dramatically decreased vesicular stomatitis virus (VSV) production <i>in vitro</i> .	[32]
Sophorae radix, Acanthopanacis cortex,Torilis fructus and Sanguisorbae radix	MHV-A59	They reduced intracellular viral RNA levels with comparable reductions in viral proteins and MHV-A59 production. The extracts also reduced the replication of the John Howard Mueller strain of MHV, porcine epidemic diarrhoea virus and vesicular stomatitis virus <i>in vitro</i> .	[33]

Table 4:Medicinal plants used in traditional medicine to treat upper respiratory viral infections

No.	Plant name	Responsive virus	Mechanism of action	References
1	Polyphenols from <i>Punica</i> granatumL.	Influenza A virus	Viral replication suppression against influenza A virus	[34, 35]
2	Polyphenols of <i>Berries</i> extract	Influenza virus	Immunity modification and improvement of T cells function against influenza virus and common cold	[36-41]
3	Glycyrrhizin isolated from Glycyrrhiza uralensis Fisch, Glycyrrhiza inflata Batalin and Glycyrrhiza glabra L.	influenza virus A2 (H2N2), H5N1 virus	Stimulation of interferon-gamma production by T cell, immunomodulation, antiinflammation reduction of virus uptake by host cells against influenza virus A2 (H2N2), H5N1 virus and influenza A	[7, 42-44]
4	Maoto (Ehedra herba, Cinnamomi cortex, Armenicae semen and Glycyrrhizae radix)	Influenza virus	They help virus- bound natural antibodies against seasonal influenza	[45, 46]
5	Echinacea spp.	Influenza, rhinovirus	inflammation modulators in cells infected with influenza, rhinovirus, and	[17]

other respiratory viruses

6	Camellia sinensis(L.) Kuntze	Influenza	Influenza Increase levels of T- lymphocytes	[26]
7	Potentilla argutaPursh	Syncytial virus (RSV)	completely inhibited respiratory syncytial virus (RSV)	[25]
8	Sambucus racemosaL.	Syncytial virus (RSV)	completely inhibited respiratory syncytial virus (RSV)	[25]
9	Ipomopsis aggregate (Pursh) V.E. Grant	Parainfluenza	It demonstrated good activity against parainfluenza virus type 3.	[25]
10	Lomatium dissectum(Nutt.) Mathias & Constance	Rotavirus	completely inhibited the cytopathic effects of rotavirus	[25]
11	Berries extract	Influenza virus	Immunity modification and improvement of T cells function against influenza virus and common cold	[36-41]
12	Clinacanthus siamensisBremek.	Influenza virus	Enhancement of anti-influenza virus IgG and IgA antibodies production against influenza virus	[47]
13	Punica granatumL.	Influenza A virus	Viral replication suppression against influenza A virus	[34, 35]
	Psidium guajava L.	Influenza A (H1N1)	virucidal inhibition	[48]

14			of viral hemagglutination against influenza A (H1N1)	
15	Epimedium koreanumNakai	Influenza A subtypes (H1N1, H5N2, H7N3, H9N2)	Reduction in viral replication, enhancement secretion of type I interferon and proinflammatory cytokines, immunomodulation against influenza A subtypes (H1N1, H5N2, H7N3, H9N2)	[49]
16	Scutellaria baicalensisGeorgi	Influenza A virus	Neuraminidase inhibitor, virus budding prevention against influenza A virus and common cold	[50]
17	Paeonia lactifloraPall.	Influenza virus	Against influenza virus, it causes inhibition of viral RNA and viral protein synthesis, viral hemagglutination, viral binding to and penetration into host cells	[51]
18	Allium sativumL.	Parainfluenza, rhinovirus	-	[17, 52]
19	Forsythia suspense (Thunb.) Vahl	RSV	-	[53]
20	Geranium sanguineumL.	Influenza	-	[54]
21	Lonicera japonicaThunb.	Influenza	-	[55]
	Pelargonium sidoidesDC.	Influenza	-	[56, 57]

22		Coronavirus, Coxsackie, parainfluenza Rhinovirus, RSV		
22	Pinusspp.	Influenza	-	[58, 59]
2324	Prunella vulgarisL.	Influenza	-	[60]
25	Rosmarinus officinalis L.	RSV	-	[61]
26	Salviaspp.	Influenza	-	[62]
27	Sambucus spp.	Influenza (fruit) Rhinovirus (fruit) RSV (branch tip) Parainfluenza, adenovirus, Coxsackie virus (flower)	061	[63-65]
28	Thuja spp.	Influenza	-	[58]
	25	JIE W		

Table 5:List of some secondary metabolites against viral respiratory tract infections

No.	Compound name	Responsive virus	Mechanism of action	References
1	Concanavalin Aisolated from Canavalia	CoV	It caused inactivity of hemagglutinating	[66]

	ensiformis(L.)DC.		encephalomyelitis CoV, possibly through binding with glycosylated membrane proteins that help virus in host cell recognition	
2	Lycorin e isolated from Lycoris radiate(L'Hér.) Herb.	SARS-CoV	It inhibited SARS-CoV with an EC ₅₀ value of 5.7 nM	[31]
3	Emodin isolated from Rheum officinale Baill.and Polygonum multiflorumThunb.	SARS-CoV	It inhibited the interaction of SARS-CoV (S) protein and ACE2 with IC ₅₀ values ranging between 1 and 10 µg/mL for extracts, and 200 µM for emodin	[28]
4	Tetrandrine	HCoV-OC43- infected MRC-5 human lung cells	It significantly inhibited early stage viral-induced cell death in HCoV-OC43-infected MRC-5 human lung cells with IC ₅₀ values 0.33, 1.01, and 0.83 µM, respectively	[67]
5	Fangchinoline	HCoV-OC43- infected MRC-5 human lung cells	It significantly inhibited early stage viral-induced cell death in HCoV-OC43-infected MRC-5 human lung cells with IC50 values 0.33, 1.01, and 0.83 µM, respectively	[67]
6	Cepharanthine	HCoV-OC43- infected MRC-5 human lung cells	It significantly inhibited early stage viral-induced cell	[67]

			death in HCoV-OC43-infected MRC-5 human lung cells with IC50 values 0.33, 1.01, and 0.83 µM, respectively	
7	8β-Hydroxyabieta-9(11),13- dien-12-one	SARS-CoV	It inhibited SARS- CoV 3CLpro activity with a SI > 667	[68]
8	Savinin	SARS-CoV	It inhibited SARS- CoV 3CLpro activity with a SI > 667	[68]
9	Betulinic acid	SARS-CoV	It was competitive inhibitors of SARS-CoV 3CLpro with Ki values of 8.2 and 9.1 µM	[68]
10	Halituna isolated from marine alga <i>Halimeda tuna</i>	Coronavirus A59	It exhibited antiviral effect against murine coronavirus A59	[69]
11	Tanshinone I isolated from Salvia miltiorrhizaBunge	SARS-CoV 3	It inhibited SARS- CoV 3CLpro and papain-like protease (PLpro) infection and replication at 1– 1000 µM	[70]
12	Tannic acid isolated from black tea	SARS-CoV	It exerted inhibitory effects on SARS- CoV 3CLpro with IC50 value of 3 µM, respectively	[71]
13	3-Isotheaflavin-3-gallate isolated from black tea	SARS-CoV	It exerted inhibitory effects on SARS- CoV 3CLpro with IC50 value of 7 µM, respectively	[71]

14	Theaflavin-3,3'-digallate isolated from black tea	SARS-CoV	It exerted inhibitory effects on SARS- CoV 3CLpro with IC50 value of 9.5 µM,	[71]
15	Theaflavin isolated from black tea	bovine CoV, bovine rotavirus	It was able to neutralize bovine rotavirus and bovine corona virus infections	[72]
16	Sinigrin isolated from <i>Isatis</i> indigoticaFortune ex Lindl.	SARS-CoV	It displayed an inhibitory effect on SARS- CoV 3CLpro with IC ₅₀ value of 217µM.	[73]
17	Indigo isolated from <i>Isatis</i> indigoticaFortune ex Lindl	SARS-CoV	It displayed an inhibitory effect on SARS- CoV 3CLpro with IC ₅₀ value of 752 μM.	[73]
18	Aloe emodin isolated from Isatis indigoticaFortune ex Lindl	SARS-CoV	It displayed an inhibitory effect on SARS- CoV 3CLpro with IC ₅₀ value of 8.3 µM.	[73]
19	Hesperetin isolated from Isatis indigoticaFortune ex Lindl	SARS-CoV	It displayed an inhibitory effect on SARS- CoV 3CLpro with IC ₅₀ value of 365 μM.	[73]
20	β-sitosterol isolated from <i>Isatis indigotica</i> Fortune ex Lindl	SARS-CoV	It displayed an inhibitory effect on SARS- CoV 3CLpro with IC ₅₀ value of 1210 μM.	[73]
21	Amentoflavone isolated from Torreya nucifera(L.) Siebold & Zucc.	SARS-CoV	It exhibited inhibitory effects on SARS- CoV 3CLpro with, IC ₅₀ value of 8.3μM.	[74]

22	Apigenin isolated from Torreya nucifera(L.) Siebold & Zucc	SARS-CoV	It exhibited inhibitory effects on SARS- CoV 3CLpro with, IC ₅₀ value of 280.8 μM.	[74]
23	Luteolin isolated from Torreya nucifera(L.) Siebold & Zucc	SARS-CoV	It exhibited inhibitory effects on SARS- CoV 3CLpro with, IC ₅₀ value of 20.2 μM.	[74]
24	Quercetin isolated from Torreya nucifera(L.) Siebold & Zucc	SARS-CoV	It exhibited inhibitory effects on SARS- CoV 3CLpro with, IC ₅₀ value of 23.8 μM.	[74]
25	Myricetin	SARS-CoV	It exerted SARS- CoV 3CLpro inhibitory effect at 0.01–10 µM	[75]
26	Scutellarein	SARS-CoV	It exerted SARS- CoV 3CLpro inhibitory effect at 0.01–10 μM	[75]
27	Broussochalcone B isolated from Broussonetia papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
28	Broussochalcone A isolated from Broussonetia papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
29	4- Hydroxyisolonchocarpinisol ated from <i>Broussonetia</i> papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
30	Papyriflavonol A isolated from <i>Broussonetia</i> papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro. It showed the highest inhibition among isolated compound from the same plant	[76]

against PLpro with an IC $_{50}$ value 3.7 μM

31	3'-(3-methylbut-2-enyl)- 3',4,7-trihydroxyflavane isolated from <i>Broussonetia</i> papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
32	Kazinol Aisolated from Broussonetia papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
33	Kazinol B isolated from <i>Broussonetia papyrifera</i> (L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
34	Broussoflavan A isolated from <i>Broussonetia</i> papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
35	Kazinol F isolated from Broussonetia papyrifera(L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
36	Kazinol J isolated from <i>Broussonetia papyrifera</i> (L.) L'Hér. ex Vent.	SARS-CoV	It inhibited both SARS-CoV 3CLpro and PLpro	[76]
37	Saikosaponin A	CoV- 229E	It exhibited activity against human CoV- 229E, with EC ₅₀ value of 8.6 μM.	[77]
38	Saikosaponin B ₂	CoV- 229E	It exhibited activity against human CoV- 229E, with EC ₅₀ value of 8.6, 1.7μM. It inhibited viral attachment and penetration stages.	[77]
39	Saikosaponin C	CoV- 229E	It exhibited activity against human CoV- 229E, with EC ₅₀ value of 19.9 μM.	[77]

40	Saikosaponin D	CoV- 229E	It exhibited activity against human CoV- 229E, with EC ₅₀ value of 13.2 µM.	[77]
41	Ginsenoside Rb1 isolated from <i>Panax ginseng</i> C.A.Mey.	SARS-CoV	exhibited antiviral activity at 100 μM	[78]
42	Actinomycin D isolated from Streptomyces parvulus bacteria	CoV	inhibited CoV attachment and penetration stages at 5–25 µM with an EC50 value of 0.02 µM	[77]
43	Homoharringtonine	Murine coronavirus	It was the most potent alkaloid among 727 compounds with an IC50 of ~11 nM	[79]
44	Tylophorine isolated from <i>Tylophora indica</i> (Burm. f.) Merr.	CoV	It inhibited N and S protein activity as well as viral replication of enteropathogenic coronavirus transmissible gastroenteritis virus	[80]
45	7-Methoxycryptopleurine isolated from <i>Tylophora indica</i> (Burm. f.) Merr.	CoV	It inhibited N and S protein activity as well as viral replication of enteropathogenic coronavirus transmissible gastroenteritis virus	[80]
46	Cepharanthine	SARS-CoV	It inhibited SARS- CoV protease enzyme at 0.5–10 µg/mL	[81]
47	Berbamine	HCoV-NL63	It inhibited HCoV- NL63 with an IC50 value 1.48 μM	[82]

48	Lycorine	HCoV-OC43	inhibited cell division, and inhibited RNA, DNA, and protein synthesis, respectively	[82]
49	Emetine	HCoV-OC43	inhibited cell division, and inhibited RNA, DNA, and protein synthesis, respectively	[82]
50	Mycophenolate mofetil	HCoV-OC43	exerted an immune suppressing effect on the CoV species	[82]
51	Eckol isolated from <i>Ecklonia</i> cava	Porcine epidemic diarrhea coronavirus	It blocked the binding of virus to porcine epidemic cells at 1– 200 μM with IC50 values of 22.5, 18.6, 12.2, and 14.6 μM, respectively	[83]
52	7-phloroeckol isolated from <i>Ecklonia cava</i>	Porcine epidemic diarrhea coronavirus	It blocked the binding of virus to porcine epidemic cells at 1– 200 μM with IC50 values of 22.5, 18.6, 12.2, and 14.6 μM, respectively	[83]
53	Phlorofucofuroeckoln isolated from <i>Ecklonia cava</i>	Porcine epidemic diarrhea coronavirus	It blocked the binding of virus to porcine epidemic cells at 1– 200 μM with IC50 values of 22.5, 18.6, 12.2, and 14.6 μM, respectively	[83]
54	Dieckol isolated from <i>Ecklonia cava</i>	Porcine epidemic diarrhea coronavirus	It blocked the binding of virus to	[83]

porcine epidemic
cells at $1-200 \mu M$
with IC50 values of
22.5, 18.6, 12.2, and
14.6 μΜ,
respectively
It inhibited SARS-

			respectively	
55	Procyanidin A2 isolated from Cinnamomi cortex	SARS-CoV	It inhibited SARS- CoV infection at 0– 500 μM	[84]
56	Procyanidin B1 isolated from Cinnamomi cortex	SARS-CoV	It inhibited SARS- CoV infection at 0– 500 μM	[84]
57	Cinnamtannin B1 isolated from Cinnamomi cortex	SARS-CoV	It inhibited SARS- CoV infection at 0– 500 μM	[84]
58	Tetra-O-galloyl-beta-D- glucose	SARS-CoV	It blocked the host cell entry of SARS- CoV at 0–10–3 mol/L	[85]
59	Luteolin	SARS-CoV	It blocked the host cell entry of SARS- CoV at 0–10–3 mol/L	[85]
60	Tetra-O-galloyl-beta-D-glucose	SARS-CoV	It blocked the host cell entry of SARS- CoV at 0–10–3 mol/L	[85]
61	Bavachinin isolated from Psoralea corylifoliaL.	SARS-CoV	It inhibited papain- like protease of SARS-CoV	[86]
62	Neobavaisoflavone isolated from <i>Psoralea corylifolia</i> L.	SARS-CoV	It inhibited papain- like protease of SARS-CoV	[86]
63	Isobavachalcone isolated from <i>Psoralea corylifolia</i> L.	SARS-CoV	It inhibited papain- like protease of SARS-CoV	[86]
64	4'-O- methylbavachalcone isolated from <i>Psoralea corylifolia</i> L.	SARS-CoV	It inhibited papain- like protease of SARS-CoV	[86]

65	Psoralidin isolated from <i>Psoralea corylifolia</i> L.	SARS-CoV	It inhibited papain- like protease of SARS-CoV	[86]
66	Corylifolisolated from <i>Psoralea corylifolia</i> L.	SARS-CoV	It inhibited papain- like protease of SARS-CoV	[86]
67	Psoralidin isolated from Psoralea corylifoliaL.	SARS-CoV	It exhibited a strong protease inhibitory effect on SARS-CoV with an IC50 value 4.2 µM	[28]
68	Emodin isolated from Psoralea corylifolia L.	SARS-CoV	It inhibited interaction of SARSCoV (S) protein and ACE2 at 0–400 µM	[28]
69	Juglanin	SARS-CoV	channel of SARSCoV with an IC ₅₀ value of 2.3 μM	[87]
70	Tomentin A isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 µM	[88]
71	Tomentin B isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 µM	[88]
72	Tomentin C isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 µM	[88]
73	Tomentin D isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 µM	[88]
74	Tomentin E isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]
75	3'-O-methyldiplacol isolated from <i>Paulownia</i> tomentosaSteud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]

76	4'-O-methyldiplacol isolated from <i>Paulownia</i> tomentosaSteud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]
77	3'-O-methyldiplacone isolated from <i>Paulownia</i> tomentosaSteud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]
78	4'-O-methyldiplacone isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]
79	Mimulonediplacone isolated from <i>Paulownia</i> tomentosaSteud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]
80	6-geranyl-4',5,7-trihydroxy- 3',5'- dimethoxyflavanone isolated from <i>Paulownia tomentosa</i> Steud.	SARS-CoV	It inhibited PLpro of SARSCoV at 0–100 μM	[88]
81	(−)-Catechin gallate	SARS-CoV	It inhibited nanoparticle-based RNA oligonucleotide of SARS-CoV at 0.001-1 µg/mL	[89]
82	(–)- Gallocatechin gallate	SARS-CoV	It inhibited nanoparticle-based RNA oligonucleotide of SARS-CoV at 0.001-1 µg/mL	[89]
83	Quercetin isolated from <i>Houttuynia cordata</i> Thunb.	murine CoV	It act against murine CoV at 15.63–500 μg/mL	[90]
84	Rutin isolated from <i>Houttuynia cordata</i> Thunb.	murine CoV	It act against murine CoV at 15.63–500 μg/mL	[90]
85	Cinanserin (1 and 2 dpi) isolated from <i>Houttuynia</i> cordataThunb.	murine CoV	It act against murine CoV at 15.63–500 μg/mL	[90]

86	Sivestrol isolated from Aglaia foveolataPannell	HCoV-229E	It inhibited cap- dependent viral mRNA translation of HCoV-229E at 0.6–2 µM with an IC50 of 40 nM	[91]
87	Ferruginol isolated from Sequoia sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 μ M	[92]
88	3β,12-diacetoxyabieta- 6,8,11,13-tetraeneisolated from Sequoia sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 μM	[92]
89	Betulonic acid isolated from Sequoia sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 µM	[92]
90	Betulinic acid isolated from Sequoia sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 µM	[92]
91	Hinokinin isolated from Sequoia sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 μ M	[92]
92	Savinin isolated from <i>Sequoia</i> sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 μ M	[92]
93	Curcumin isolated from Sequoia sempervirens(D.Don) Endl.	SARS-CoV	It significantly inhibited SARS-CoV replication at 0–80 μ M	[92]
94	Ouabain	Gastroenteritis coronavirus (TGEV)	It diminished both the viral titers and viral yields, and reduced the number of viral RNA copies at 0–3000 nM	[93]

95	Tylophorine isolated from <i>Tylophora indica</i> (Burm. f.) Merr.	CoV	It inhibited viral replication in CoV-infected swine testicular cells	[80]
96	7-methoxycryptopleurine isolated from <i>Tylophora indica</i> (Burm. f.) Merr.	CoV	It inhibited viral replication in CoV-infected swine testicular cells	[80]
97	Tylophorine	CoV	It targeted viral RNA replication and cellular JAK2 mediated dominant NF-κB activation in CoV at 0–1000 nM	[94]

Table 6:List of Indian medicinal plants and their active compounds as a best therapeutic tool to treat different viral diseases

Medicinal Plant	Active principle	Antiviral mechanism of action	Ref.
Vitex trifolia L.	Casticin	Immunomodulatory & Anti-	
, tien ii gettei 21		inflammatory effect on lungs	
Punica granatumL.	Punicalagin	Inhibited viral Glycoprotein	d viral Glycoprotein
i unica grandiums.	i umcaiagin	& Anti-HSV-1	
Euphorbia granulata Forssk.	Gallic acid	HIV inhibitory	
		Proteolytic and	
Allium sativum L.	Allicin	hemagglutinating activity	
		and viral replication	
Acacia nilotica (L.) Delile	Quercetin	Inhibition HIV-PR	[6]
Andrographis paniculata(Burm.f.) Nees	Andrographolide	Antiviral potential	
Cynara scolymus L.	Cynaratriol	ACE inhibitor	
		Inhibition of Mouse corona	
Sphaeranthus indicus L.	Tartaric acid	virus Various compositions	
		and Herpes virus -	

		Bronchodilation
Strobilanthes cusia (Nees) Kuntze	Lupeol	Inhibitory action towards HCoV-NL63
Vitex negundo L.	Sabinene	Inhibitory action against HIV
Ocimum kilimandscharicumGürke	Camphor	Inhibitory action towards HIV-1
Clitoria ternatea L.	Delphinidin-3-O- glucoside	Antiviral properties
Embelia ribes Burm.f.	1,4- benzoquinone	Inhibition of ACE
Hyoscyamus niger L.	hyoscyamine	Viral Inhibition and Bronchodilator
Eugenia jambolana Lam.	Ellagic acid	Protease Inhibitor
Gymnema sylvestre (Retz.) R.Br. ex Sm.	Tartaric acid	Inhibition of viral DNA synthesis

REFERENCES

- 1. Lin, L.-T., W.-C. Hsu, and C.-C. Lin, Antiviral natural products and herbal medicines. Journal of traditional and complementary medicine, 2014. 4(1): p. 24-35.
- 2. Cunningham, A.C., H.P. Goh, and D. Koh, Treatment of COVID-19: old tricks for new challenges. 2020, Springer.
- 3. Hensel, A., et al., Challenges at the Time of COVID-19: Opportunities and Innovations in Antivirals from Nature. Planta Medica, 2020.
- 4. Ang, L., et al., Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. Integrative Medicine Research, 2020: p. 100407.
- 5. Africanews. Coronavirus Africa: World Health Organization (WHO) supports Scientifically-Proven Traditional Medicine. 2020; Available from: https://www.africanews.com/2020/05/04/coronavirus-africa-world-health-organization-who-supports-scientifically-proven-traditional-medicine//.
- 6. Balachandar, V., et al., COVID-19: emerging protective measures. Eur Rev Med Pharmacol Sci, 2020. 24(6): p. 3422-3425.
- 7. Ren, X., et al., Identifying potential treatments of COVID-19 from Traditional Chinese Medicine (TCM) by using a data-driven approach. Journal of Ethnopharmacology, 2020: p. 112932.
- 8. Yang, Y., Use of herbal drugs to treat COVID-19 should be with caution. Lancet (London, England), 2020.
- 9. Li, T. and T. Peng, Traditional Chinese herbal medicine as a source of molecules with antiviral activity. Antiviral research, 2013. 97(1): p. 1-9.
- 10. Chen, F., et al., In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. Journal of Clinical Virology, 2004. 31(1): p. 69-75.
- 11. Yang, X.-L., et al., Study on in vitro anti-inflammatory activity of total flavonoids from Glycyrrhizae Radix et Rhizoma and its ingredients. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 2013. 38(1): p. 99-104.
- 12. Zhao, J., et al., Investigating the mechanism of Qing-Fei-Pai-Du-Tang for the treatment of novel coronavirus pneumonia by network pharmacology. Chinese Trad. Herb. Drugs, 2020. 51(2).

- 13. Ang, L., et al., Herbal medicine for treatment of children diagnosed with COVID-19: A review of guidelines. Complementary Therapies in Clinical Practice, 2020: p. 101174.
- 14. Brazzaville. WHO supports scientifically-proven traditional medicine. 2020; Available from: https://www.afro.who.int/news/who-supports-scientifically-proven-traditional-medicine?gclid=Cj0KCQjwrIf3BRD1ARIsAMuugNuxLeO33qOrYfxBUwP0hHT0WSSf1bj2_nF46x

D-8H5BLoXTxmyV5HkaAon9EALw_wcB.

- 15. Gikandi, H. Madagascar defends coronavirus herbal remedy. 2020; Available from: https://www.pri.org/stories/2020-05-13/madagascar-defends-coronavirus-herbal-remedy.
- 16. Seeberger, P.H. Artemisia annua to be tested against coronavirus. 2020; Available from: https://www.mpg.de/14663263/artemisia-annua-corona-virus.
- 17. Yarnell, E., Herbs for Viral Respiratory Infections. Alternative and Complementary Therapies, 2018. 24(1): p. 35-43.
- 18. Balachandar, V., et al., COVID-19: emerging protective measures. European Review for Medical and Pharmacological Sciences, 2020. 24(6): p. 3422-3425.
- 19. Thangadurai K, J.G.R.a.Y.M., Scientific validation of Siddha herbal formulation Deva Chooranam against novel Coronavirus (2019-nCoV/COVID-19). International Journal of Recent Scientific Research, 2020. 11(01(E)): p. 37006-37010.
- 20. Chen, N., et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020. 395(10223): p. 507-513.
- 21. Chai, X., et al., Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. BioRxiv, 2020.
- 22. Owis, A.I., et al., Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 2020. 10(33): p. 19570-19575.
- 23. Sayed, A.M., et al., Nature as a treasure trove of potential anti-SARS-CoV drug leads: a structural/mechanistic rationale. RSC Advances, 2020. 10(34): p. 19790-19802.
- 24. ul Qamar, M.T., et al., Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of pharmaceutical analysis, 2020.
- 25. Jassim, S.A.A. and M.A. Naji, Novel antiviral agents: a medicinal plant perspective. Journal of applied microbiology, 2003. 95(3): p. 412-427.
- 26. Lau, K.-M., et al., Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 2008. 118(1): p. 79-85.
- 27. Chen, C.-J., et al., Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. Journal of ethnopharmacology, 2008. 120(1): p. 108-111.
- 28. Ho, T.-Y., et al., Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral research, 2007. 74(2): p. 92-101.
- 29. Wen, C.-C., et al., Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. Journal of traditional and complementary medicine, 2011. 1(1): p. 41-50.
- 30. Ulasli, M., et al., The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol Biol Rep, 2014. 41(3): p. 1703-11.
- 31. Li, S.-y., et al., Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research, 2005. 67(1): p. 18-23.
- 32. Kim, H.-Y., et al., In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of clinical virology, 2008. 41(2): p. 122-128.
- 33. Kim, H.-Y., et al., Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir Ther, 2010. 15(5): p. 697-709.
- 34. Sundararajan, A., et al., Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral research, 2010. 88(1): p. 1-9.

- 35. Haidari, M., et al., Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine, 2009. 16(12): p. 1127-1136.
- 36. Zakay-Rones, Z., et al., Randomized study of the efficacy and safety of oral elderberry extract in the treatment of influenza A and B virus infections. Journal of International Medical Research, 2004. 32(2): p. 132-140.
- 37. Roschek Jr, B., et al., Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry, 2009. 70(10): p. 1255-1261.
- 38. Ikuta, K., K. Mizuta, and T. Suzutani, Anti-influenza virus activity of two extracts of the blackcurrant (Ribes nigrum L.) from New Zealand and Poland. Fukushima journal of medical science, 2013. 59(1): p. 35-38.
- 39. Ikuta, K., et al., Anti-viral and anti-bacterial activities of an extract of blackcurrants (Ribes nigrum L.). Microbiology and immunology, 2012. 56(12): p. 805-809.
- 40. Sekizawa, H., et al., Relationship between polyphenol content and anti-influenza viral effects of berries. Journal of the Science of Food and Agriculture, 2013. 93(9): p. 2239-2241.
- 41. Nantz, M.P., et al., Consumption of cranberry polyphenols enhances human $\gamma\delta$ -T cell proliferation and reduces the number of symptoms associated with colds and influenza: a randomized, placebo-controlled intervention study. Nutrition journal, 2013. 12(1): p. 161.
- 42. Utsunomiya, T., et al., Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrobial Agents and Chemotherapy, 1997. 41(3): p. 551-556.
- 43. Michaelis, M., et al., Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Medical microbiology and immunology, 2010. 199(4): p. 291-297.
- 44. Wolkerstorfer, A., et al., Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral research, 2009. 83(2): p. 171-178.
- 45. Nabeshima, S., et al., A randomized, controlled trial comparing traditional herbal medicine and neuraminidase inhibitors in the treatment of seasonal influenza. Journal of Infection and Chemotherapy, 2012. 18(4): p. 534-543.
- 46. Nagai, T., et al., Alleviative effects of a Kampo (a Japanese herbal) medicine "Maoto (Ma-Huang-Tang)" on the early phase of influenza virus infection and its possible mode of action. Evidence-Based Complementary and Alternative Medicine, 2014. 2014.
- 47. Wirotesangthong, M., et al., Effects of Clinacanthus siamensis leaf extract on influenza virus infection. Microbiology and immunology, 2009. 53(2): p. 66-74.
- 48. Sriwilaijaroen, N., et al., Antiviral effects of Psidium guajava Linn.(guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antiviral research, 2012. 94(2): p. 139-146.
- 49. Cho, W.-K., et al., Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state. Viruses, 2015. 7(1): p. 352-377.
- 50. Ding, Y., et al., Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Archives of virology, 2014. 159(12): p. 3269-3278.
- 51. Ho, J.-Y., et al., Characterization of the anti-influenza activity of the Chinese herbal plant Paeonia lactiflora. Viruses, 2014. 6(4): p. 1861-1875.
- 52. Weber, N.D., et al., In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta medica, 1992. 58(05): p. 417-423.
- 53. Tang, W. and G. Eisenbrand, Forsythia suspensa (Thunb.) Vahl, in Chinese Drugs of Plant Origin. 1992, Springer. p. 515-519.
- 54. Serkedjieva, J., G. Gegova, and K. Mladenov, Protective efficacy of an aerosol preparation, obtained from Geranium sanguineum L., in experimental influenza infection. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2008. 63(2): p. 160-163.
- 55. Ding, Y., et al., Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Scientific reports, 2017. 7: p. 45723.

- 56. Theisen, L.L. and C.P. Muller, EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral research, 2012. 94(2): p. 147-156.
- 57. Michaelis, M., H.W. Doerr, and J. Cinatl Jr, Investigation of the influence of EPs® 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine, 2011. 18(5): p. 384-386.
- 58. Won, J.N., et al., Antiviral activity of the plant extracts from Thuja orientalis, Aster spathulifolius, and Pinus thunbergii against influenza virus A/PR/8/34. Journal of microbiology and biotechnology, 2013. 23(1): p. 125-130.
- 59. Watanabe, K., et al., Interaction between influenza virus proteins and pine cone antitumor substance that inhibits the virus multiplication. Biochemical and biophysical research communications, 1995. 214(2): p. 318-323.
- 60. Tian, L., et al., Evaluation of the anti-neuraminidase activity of the traditional Chinese medicines and determination of the anti-influenza A virus effects of the neuraminidase inhibitory TCMs in vitro and in vivo. Journal of ethnopharmacology, 2011. 137(1): p. 534-542.
- 61. Shin, H.-B., et al., Antiviral activity of carnosic acid against respiratory syncytial virus. Virology journal, 2013. 10(1): p. 303.
- 62. Bang, S., et al., Anti-influenza effect of the major flavonoids from Salvia plebeia R. Br. via inhibition of influenza H1N1 virus neuraminidase. Natural product research, 2018. 32(10): p. 1224-1228.
- 63. Zakay-Rones, Z., et al., Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L.) during an outbreak of influenza B Panama. The Journal of Alternative and Complementary Medicine, 1995. 1(4): p. 361-369.
- 64. McCutcheon, A., et al., Antiviral screening of British Columbian medicinal plants. Journal of Ethnopharmacology, 1995. 49(2): p. 101-110.
- 65. Glatthaar-Saalmüller, B., et al., Antiviral activity in vitro of two preparations of the herbal medicinal product Sinupret® against viruses causing respiratory infections. Phytomedicine, 2011. 19(1): p. 1-7.
- 66. Islam, M.T., et al., Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytotherapy Research, 2020.
- 67. Kim, D.E., et al., Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules, 2019. 9(11).
- 68. Wen, C.C., et al., Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem, 2007. 50(17): p. 4087-95.
- 69. Koehn, F.E., et al., Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron letters, 1991. 32(2): p. 169-172.
- 70. Park, J.-Y., et al., Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorganic & medicinal chemistry, 2012. 20(19): p. 5928-5935.
- 71. Chen, C.-N., et al., Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3'-digallate (TF3). Evidence-Based Complementary and Alternative Medicine, 2005. 2(2): p. 209-215.
- 72. Clark, K., et al., An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Veterinary microbiology, 1998. 63(2-4): p. 147-157.
- 73. Lin, C.-W., et al., Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research, 2005. 68(1): p. 36-42.
- 74. Ryu, Y.B., et al., Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry, 2010. 18(22): p. 7940-7947.
- 75. Yu, M.-S., et al., Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & medicinal chemistry letters, 2012. 22(12): p. 4049-4054.
- 76. Park, J.-Y., et al., Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of enzyme inhibition and medicinal chemistry, 2017. 32(1): p. 504-512.

- 77. Cheng, P.W., et al., Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 2006. 33(7): p. 612-616.
- 78. Wu, C.-Y., et al., Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences, 2004. 101(27): p. 10012-10017.
- 79. Cao, J., J.C. Forrest, and X. Zhang, A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral research, 2015. 114: p. 1-10.
- 80. Yang, C.-W., et al., Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral research, 2010. 88(2): p. 160-168.
- 81. Zhang, C.-H., et al., Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chinese medical journal, 2005. 118(6): p. 493.
- 82. Shen, L., et al., High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. Journal of virology, 2019. 93(12): p. e00023-19.
- 83. Kwon, H.-J., et al., In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorganic & medicinal chemistry, 2013. 21(15): p. 4706-4713.
- 84. Zhuang, M., et al., Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral research, 2009. 82(1): p. 73-81.
- 85. Yi, L., et al., Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. Journal of virology, 2004. 78(20): p. 11334-11339.
- 86. Kim, D.W., et al., Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of enzyme inhibition and medicinal chemistry, 2014. 29(1): p. 59-63.
- 87. Schwarz, S., et al., Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta medica, 2014. 80(02/03): p. 177-182.
- 88. Cho, J.K., et al., Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic & medicinal chemistry, 2013. 21(11): p. 3051-3057.
- 89. Roh, C., A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. International journal of nanomedicine, 2012. 7: p. 2173.
- 90. Chiow, K., et al., Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific journal of tropical medicine, 2016. 9(1): p. 1-7.
- 91. Müller, C., et al., Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona-and picornaviruses. Antiviral research, 2018. 150: p. 123-129.
- 92. Wen, C.-C., et al., Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of medicinal chemistry, 2007. 50(17): p. 4087-4095.
- 93. Yang, C.-W., et al., The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicology and applied pharmacology, 2018. 356: p. 90-97.
- 94. Yang, C.-W., et al., Targeting coronaviral replication and cellular JAK2 mediated dominant NF-κB activation for comprehensive and ultimate inhibition of coronaviral activity. Scientific reports, 2017. 7(1): p. 1-13.