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ABSTRACT  

Background:Thyroid benign nodules (TBNs) are the most common lesions of this endocrine gland 

and are prevalent diseases around the world. Among TBNs the colloid goiter (CG) and thyroid 

adenoma (TA) are very frequentdiseases. An evaluation of the variant of TBNs is clinically 

importantfor subsequent therapeutic interventions, as well as for more clear understanding the 

etiology of these disorders. The aim of this exploratory study was to examine differences in the 

content offifty trace elements (TE)in tissues of CGand TA.  

Methods:Thyroid tissue levels of TEwere prospectively evaluated in 46 patients with CG and 19 

patients with TA. Measurements were performed using a combination of non-destructive and 

destructive methods: instrumental neutron activation analysis with high resolution spectrometry of 

long-lived radionuclides (INAA-LLR) and inductively coupled plasma mass spectrometry 

(ICPMS), respectively.Tissue samples were divided into two portions. One was used for 

morphological study while the other was intended for TEanalysis.  

Results:It was observed that in both CG and TA tissues contents of Ag, Al, Cr, Hg, Mn, Th, and Zn 

increased, whereas levels of Au, Be, Cs, Pb, Rb, Sb, Sc, Th, Yb, and Zr did not changed in 

comparison with normal thyroid tissue. It was not found any differences between TE contents of 

CG and TA.  

Conclusions:From obtained results it was possible to conclude that the common characteristics of 

CG and TA tissue samples were elevated level of Ag, Al, Cr, Hg, Mn, Th, and Zn in comparison 

with normal thyroid and, therefore, these TE can be involved in etiology and pathogenesis of such 

thyroid disorders as CG and TA. 
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INTRODUCTION 

 

Thyroid benign nodules (TBNs) are the most common lesions of this endocrine gland that 

encountered globally and frequently discoveredby palpation during a physical examination, or 

incidentally, during clinical imaging procedures. TBNs include non-neoplastic lesions, for example, 

colloid goiter (CG) and neoplastic lesion such as thyroid adenoma (TA) [1-3]. An evaluation of the 

variant ofTBNs is clinically importantfor subsequent therapeutic interventions.For this reason the 

finding of specific characteristics ofCG and TA is the barest necessity for the differential diagnosis 

of these thyroid disorders. 

For over 20th century, there was the dominant opinion that TBNsis the simple consequence of 

iodine deficiency. However, it was found that TBNsis a frequent disease even in those countries and 

regions where the population is never exposed to iodine shortage [4]. Moreover, it was shown 

thatiodine excess has severe consequences on human health and associated with the presence of 

TBNs[5-8]. It was also demonstrated that besides the iodine deficiencyand excess many other 

dietary, environmental, and occupational factors are associated with the TBNsincidence [9-11]. 

Among these factorsa disturbance of evolutionary stable input of many trace elements (TE) in 

human body after industrial revolution plays a significant role in etiology of TBNs[12].  

Besides iodine, many other TEhavealso essential physiological functions [13]. Essential or toxic 

(goitrogenic, mutagenic, carcinogenic) properties of TEdepend on tissue-specific need or tolerance, 

respectively [13].Excessive accumulation or an imbalance of the TEmay disturb the cell functions 

and may result in cellular degeneration, death, benign or malignant transformation [13-15]. 



 

In our previous studiesthe complex of in vivo and in vitro nuclear analytical and related methods 

was developed and used for the investigation of iodine and other TE contents in the normal and 

pathological thyroid [16-22]. Iodine levelin the normal thyroid was investigated in relation to age, 

gender and some non-thyroidal diseases [23,24]. After that, variations ofmanyTE content with age 

in the thyroid of males and femaleswere studied and age- and gender-dependence of some TEwas 

observed [25-41]. Furthermore, a significant difference between some TEcontents in CGand TA in 

comparison with normal thyroid was demonstrated [42-44]. 

To date,the etiology and pathogenesis of CGand TAhas to be considered as multifactorial. The 

present study was performed to find differences in TEcontents between CGand TA group of 

samples, as well as to clarify the role of some TEin the etiology of these thyroid lesions. Having 

this in mind, our aim was to assess the silver (Ag), aluminum (Al),  arsenic (As), gold (Au), boron 

(B),, beryllium (Be), bismuth (Bi), cadmium (Cd), cerium (Ce), cobalt (Co), chromium (Cr), cesium 

(Cs), dysprosium (Dy), iron (Fe), erbium (Er), europium (Eu), gallium (Ga), gadolinium (Gd), 

mercury (Hg), holmium (Ho), iridium (Ir), lanthanum (La), lithium (Li), lutecium (Lu), manganese 

(Mn), molybdenum (Mo), niobium (Nb), neodymium (Nd), nickel (Ni), lead (Pb), palladium (Pd), 

praseodymium (Pr), platinum (Pt), rubidium (Rb), antimony (Sb), scandium (Sc), selenium (Se), 

samarium (Sm), tin (Sn), terbium (Tb), tellurium (Te), thorium (Th), titanium (Ti), thallium (Tl), 

thulium (Tm), uranium (U), yttrium (Y), ytterbium (Yb), zinc (Zn), and zirconium (Zr)contents in 

CG and TAtissue samples using a combination of non-destructive and destructive methods: 

instrumental neutron activation analysis with high resolution spectrometry of long-lived 

radionuclides (INAA-LLR) and inductively coupled plasma mass spectrometry (ICP-MS), 

respectively. A further aim was to compare the levels of these TEin CG and TA group of samples.  

 

MATERIAL AND METHODS 

 

All patients suffered from CG (n=46, mean age MSD was 4812 years, range 30-64) 

andTA(n=19, mean age MSD was 4111 years, range 22-55) were hospitalized in the Head and 

Neck Department of the Medical Radiological Research Centre. Thick-needle puncture biopsy of 

suspicious nodules of thethyroid was performed for every patient, to permit morphological study of 

thyroid tissue at these sites and to estimate their TE contents. For all patients the diagnosis has been 

confirmed by clinical and morphological results obtained during studies of biopsy and resected 

materials (46 euthyroid CG, 4 toxic TA and 15 non-toxic TA). Histological conclusion for all 

thyroidal lesions was the CG (16 macro-follicular,13 micro-follicular, and 17 macro-micro-

follicular) and TA (4 macro-follicular, 4 micro-follicular, 11 macro-micro follicular). 

All studies were approved by the Ethical Committees of the Medical Radiological Research Centre 

(MRRC), Obninsk (Reference number 115050610007, year 2017). All the procedures performed in 

studies involving human participants were in accordance with the ethical standards of the 

institutional and/ornational research committee and with the 1964 Helsinki declaration and its later 

amendments, or with comparable ethical standards 

All tissue samples were divided into two portions using a titanium scalpel [45]. One was used for 

morphological study while the other was intended for TE analysis. After the samples intended for 

TE analysis were weighed, they were freeze-dried and homogenized [46].  

The pounded samples weighing about 10 mg (for biopsy) and 100 mg (for resected materials) were 

used for ChE measurement by INAA-LLR. The content of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and 

Zn were determined by INAA-LLR using a vertical channel of the WWR-c research nuclear reactor 

(Branch of Karpov Institute, Obninsk). After non-destructive INAA-LLR investigation the thyroid 

samples were used for ICP-MS. The samples were decomposed in autoclaves and aliquots of 

solutions were used to determine the Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Dy, Er, Eu, Ga, 

Gd, Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Se, Sm, Sn, Tb, Te, Th, Ti, 

Tl, Tm, U, Y, Yb, Zn, and Zr mass fractions by ICP-MS using an ICP-MS Thermo-Fisher “X-7” 



 

Spectrometer (Thermo Electron, USA).Information detailing with the NAA-LLR and ICP-MS 

methods used and other details of the analysis were presented in our earlier publications concerning 

TE contents in human thyroid, prostate, and scalp hair [29,30,35,47-53]. 

To determine contents of the TE by comparison with a known standard, biological synthetic 

standards (BSS) prepared from phenol-formaldehyde resins were used [54].In addition to BSS, 

aliquots of commercial, chemically pure compounds were also used as standards. Ten sub-samples 

of certified reference material (CRM) IAEA H-4 (animal muscle) and five sub-samples of CRM of 

the Institute of Nuclear Chemistry and Technology (INCT, Warszawa, Poland) INCT-SBF-4 Soya 

Bean Flour, INCT-TL-1 Tea Leaves, and INCT-MPH-2Mixed Polish Herbs were treated and 

analyzed in the same conditions that thyroid samples to estimate the precision and accuracy of 

results 

A dedicated computer program for INAA-SLRmode optimization was used [55].All thyroid 

samples were prepared in duplicate, and mean values of TEcontents were used in final calculation. 

Mean values of TEcontents were used in final calculation for the Ag, Co, Cr, Hg, Rb, Sb, Se, and 

Zn mass fractions measured by two methods.Using Microsoft Office Excelsoftware, a summary of 

the statistics, including, arithmetic mean, standard deviation, standard error of mean, and range 

(minimal - maximal value), was calculated for TEcontents in CGand TAtissue samples.The 

difference in the results between two groups of sampleswas evaluated by the parametric Student’s t-

test and non-parametricWilcoxon-Mann-Whitney U-test. 

 

RESULTS 

 

Table 1 presents certain statistical parameters (arithmetic mean, standard deviation, standard error 

of mean, and range) of the Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Dy, Er, Eu, Fe, Ga, Gd, 

Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Tb, Te, Th, Ti, 

Tl, Tm, U, Y, Yb, Zn, and Zrmass fractionin CG and TA tissue samples. 

The ratios of means and the comparison of mean values of Ag, Al, Au, B, Be, Bi, Cd, Ce, Co, Cr, 

Cs, Er, Fe,Ga, Hg, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc,Se, Sm, Sn, Tl, U, Y, Yb, Zn, and 

Zrmass fractions in CG and TAare presented in Table 2. 

Table 3 depicts the results of comparison the contents of Ag, Al, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, 

Er, Fe,Ga, Hg, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Sc,Se, Sm, Sn, Tl, U, Y, Yb, Zn, and Zrin 

CGand TAsample groups with those in normal thyroid(from data analysis of previous publications 

[43,44]), as well as comparison the contents of these ChE in CGand TA sample groups. 

 

DISCUSSION 

 

As was shown before [29,30,35,47-53] good agreement of the 50 TE mass fractions in CRM IAEA 

H-4, INCT-SBF-4, INCT-TL-1, and INCT-MPH-2samples determined by both INAA-LLR and 

ICP-MS methods with the certified data of these CRMs indicates acceptable accuracy of the results 

obtained in the study of CG and TA samples and presented in Tables 1–3. 

In a general sense variations found for Ag, Al, Au, Be, Cr, Cs, Hg, Mn, Pb, Rb, Sb,Sc, Th, Yb, Zn, 

and Zrcontents in CG and TA tissue samples were similar in comparison with normal thyroid tissue 

(Table 3). In affected tissues contents of Ag, Al, Cr, Hg, Mn, Th, and Zn increased, whereas levels 

of Au, Be, Cs, Pb, Rb, Sb, Sc, Th, Yb, and Zrdid not changed in both groups of samples (Table 

3)..There was not found any differences between TE contents of CG and TA, when results for these 

groups were compared with each other (Tables 2 and 3).  

 

Table 1.Some statistical parameters of 50 trace element mass fraction (mg/kg, dry mass basis) in 

the thyroid colloid goiter and adenoma 



 

Element Colloid nodular goiter (n=46) Adenoma (n=19) 

M SD Range M SD Range 

Ag 0.192 0.214 0.002-0.842 0.181 0.180 0.0012-0.6790 

Al 27.1 24.7 6.6-95.1 34.2 24.1 8.7-78.4 

As <0.004 - - <0.004 - - 

Au 0.0141 0.0152 0.0030-0.0585 0.0287 0.0293 0.0030-0.0709 

B 5.50 17.8 0.9-85.2 3.38 2.74 1.00-7.30 

Be 0.00072 0.00053 0.0002-0.0020 0.00181 0.00222 0.00020-0.00600 

Bi 0.0585 0.0560 0.0039-0.2140 0.112 0.157 0.0113-0.4220 

Cd 1.26 1.30 0.126-5.360 2.78 2.51 0.31-6.39 

Ce 0.0186 0.0185 0.0031-0.0696 0.0246 0.0174 0.0073-0.0459 

Co 0.0576 0.0282 0.015-0.147 0.0660 0.0469 0.0159-0.1590 

Cr 1.18 1.38 0.144-7.300 1.36 0.82 0.259-2.79 

Cs 0.0216 0.0232 0.0076-0.1140 0.052 0.085 0.0111-0.205 

Dy <0.005 - - <0.005 - - 

Er 0.00299 0.00332 0.0010-0.0138 0.00400 0.00390 0.0010-0.0090 

Eu <0.001 - - <0.001 - - 

Fe 449 597 62-2734 571 675 52.3-2563.0 

Ga 0.0210 0.0080 0.0100-0.0340 0.0223 0.0097 0.0100-0.0300 

Gd <0.001 - - <0.001 - - 

Hg 1.18 1.01 0.10-5.18 1.16 1.26 0.193-5.200 

Ho <0.0002 - - <0.0002 - - 

Ir <0.0003 - - <0.0003 - - 

La 0.00990 0.00921 0.0017-0.0356 0.0116 0.0105 0.0054-0.0237 

Li 0.0281 0.0117 0.0073-0.0541 0.0401 0.0236 0.0185-0.0680 

Lu <0.0002 - - <0.0002 - - 

Mn 1.77 1.13 0.45-5.50 1.67 1.88 0.10-6.12 

Mo 0.183 0.121 0.049-0.627 0.233 0.145 0.046-0.448 

Nb <0.013 - - <0.013 - - 

Nd 0.0139 0.0087 0.0031-0.0331 0.0141 0.0047 0.0096-0.0190 

Ni 2.63 2.43 0.13-10.40 3.95 3.39 0.48-9.00 

Pb 0.94 1.86 0.12-8.90 1.86 3.29 0.26-9.30 

Pd <0.012 - - <0.012 - - 

Pr 0.00396 0.00359 0.00053-0.01310 0.00475 0.00345 0.0012-0.0093 

Pt <0.0002 - - <0.0002 - - 

Rb 9.50 4.23 2.5-22.1 8.96 3.19 3.6-16.4 

Sb 0.127 0.113 0.00102-0.42500 0.140 0.117 0.0449-0.4660 

Sc 0.0196 0.0316 0.0002-0.1130 0.0286 0.0451 0.0003-0.1400 

Se 3.54 3.31 0.86-13.80 3.01 2.43 0.72-10.60 

Sm 0.00169 0.00156 0.00040-0.00690 0.00252 0.00263 0.0004-0.0080 

Sn 0.0458 0.0384 0.0143-0.1720 0.0756 0.0443 0.0331-0.1570 

Tb <0.0001 - - <0.0001 - - 

Te <0.007 - - <0.007 - - 

Th 0.0074 0.0062 0.0020-0.0210 0.0229 0.0293 0.0020-0.0783 

Ti <0.4 - - <0.4 - - 

Tl 0.00174 0.00093 0.00052-0.00350 0.00238 0.00164 0.0011-0.0054 

Tm <0.0003 - - <0.0003 - - 

U 0.00145 0.00053 0.00082-0.00240 0.00083 0.00035 0.00044-0.00110 

Y 0.0113 0.0103 0.0036-0.0346 0.0115 0.0140 0.0031-0.0361 

Yb 0.000246 0.000087 0.00020-0.00040 0.000375 0.000236 0.00020-0.00070 

Zn 121 51 47-264 129 58 57.7-251.0 

Zr 0.074 0.045 0.031-0.205 0.080 0.059 0.031-0.165 

M – arithmetic mean, SD – standard deviation. 

  



 

Table 2.Differences between mean values (MSEM) of trace element mass fractions (mg/kg, dry 

mass basis) in thyroid colloid goiter and adenoma 

Element Thyroid tissue Ratio 

Colloid goiter (CG) 

 

Adenoma (TA) 

 

Student’s t-test, p U-test, p CG/TA 

Ag 0.192±0.038 0.181±0.050 0.861 >0.05 1.06 

Al 27.1±5.3 34.2±9.1 0.516 >0.05 0.79 

Au 0.0141±0.0030 0.0287±0.0110 0.247 >0.05 0.49 

B 5.50±3.8 3.38±1.12 0.598 >0.05 1.63 

Be 0.00072±0.00011 0.00181±0.00090 0.279 >0.05 0.40 

Bi 0.0585±0.0130 0.112±0.064 0.450 >0.05 0.52 

Cd 1.26±0.28 2.78±0.95 0.167 >0.05 0.45 

Ce 0.0186±0.0040 0.0246±0.0090 0.567 >0.05 0.76 

Co 0.0576±0.0049 0.0660±0.0135 0.571 >0.05 0.87 

Cr 1.18±0.24 1.36±0.24 0.596 >0.05 0.87 

Cs 0.0216±0.0050 0.052±0.038 0.467 >0.05 0.42 

Er 0.00299±0.00100 0.00400±0.00200 0.580 >0.05 0.75 

Fe 449±92 571±174 0.542 >0.05 0.79 

Ga 0.0210±0.0020 0.0223±0.0050 0.825 >0.05 0.94 

Hg 1.18±0.17 1.16±0.34 0.948 >0.05 1.02 

La 0.00990±0.00200 0.0116±0.0060 0.814 >0.05 0.85 

Li 0.0281±0.0030 0.0401±0.0100 0.275 >0.05 0.70 

Mn 1.77±0.23 1.67±0.54 0.875 >0.05 1.06 

Mo 0.183±0.026 0.233±0.055 0.429 >0.05 0.79 

Nd 0.0139±0.0020 0.0141±0.0030 0.948 >0.05 0.99 

Ni 2.63±0.54 3.95±1.39 0.406 >0.05 0.67 

Pb 0.94±0.41 1.86±1.24 0.503 >0.05 0.51 

Pr 0.00396±0.00100 0.00475±0.00200 0.695 >0.05 0.83 

Rb 9.50±0.50 8.96±0.82 0.815 >0.05 1.06 

Sb 0.127±0.019 0.140±0.034 0.749 >0.05 0.91 

Sc 0.0196±0.0060 0.0286±0.0140 0.552 >0.05 0.69 

Se 3.54±0.56 3.01±0.65 0.548 >0.05 1.18 

Sm 0.00169±0.00033 0.00252±0.00099 0.410 >0.05 0.67 

Sn 0.0458±0.0090 0.0756±0.0170 0.146 >0.05 0.61 

Th 0.0074±0.0010 0.0229±0.0011 0.214 >0.05 0.32 

Tl 0.00174±0.00021 0.00238±0.00067 0.391 >0.05 0.73 

U 0.00145±0.00022 0.00083±0.00020 0.077 >0.05 1.75 

Y 0.0113±0.0030 0.0115±0.0060 0.979 >0.05 0.98 

Yb 0.000246±0.000024 0.000375±0.000118 0.358 >0.05 0.66 

Zn 121±8 129±13 0.577 >0.05 0.94 

Zr 0.074±0.010 0.080±0.029 0.846 >0.05 0.93 

M – arithmetic mean, SEM – standard error of mean.  

 

Published data on comparison of Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Dy, Er, Eu, Fe, Ga, 

Gd, Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Tb, Te, Th, 

Ti, Tl, Tm, U, Y, Yb, Zn, and Zrlevels in CG and TAwere not found. 

Thus, from obtained results it was possible to conclude that the common characteristics of CG and 

TAtissue samples in comparison with normal thyroid were elevated level of Ag, Al, Cr, Hg, Mn, 

Th, and Zn. Therefore, it is reasonable to conclude that these TEcan be involved in etiology and 

pathogenesis of such thyroid disorders as CG and TA. 

 

Silver  



 

Ag is a TE with no recognized trace metal value in the human body [56]. Ag in metal form and 

inorganic Ag compounds ionize in the presence of water, body fluids or tissue exudates. The silver 

ion Ag
+
 is biologically active and readily interacts with proteins, amino acid residues, free anions 

and receptors on mammalian and eukaryotic cell membranes [57]. Besides such the adverse effects 

of chronic exposure to Agas a permanent bluish-gray discoloration of the skin (argyria) or eyes 

(argyrosis), exposure to soluble Ag compounds may produce other toxic effects, including liver and 

kidney damage, irritation of the eyes, skin, respiratory, and intestinal tract, and changes in blood 

cells [58]. In experimental studies it was shown that Ag nanoparticles may affect thyroid hormone 

metabolism [59].  More detailed knowledge of the Ag toxicity can lead to a better understanding of 

the impact on human health, including thyroid function. 

 

Table 3.Comparison the trace element contents in different pathological transformations of thyroid  

Comparisonwith: Normalthyroid* ColloidGoiter 

Element ColloidGoiter Adenoma Adenoma 

Ag ↑ ↑ = 

Al ↑ ↑ = 

Au = = = 

B = ↑ = 

Be = = = 

Bi ↑ = = 

Cd ↓ = = 

Ce ↑ = = 

Co ↑ = = 

Cr ↑ ↑ = 

Cs = = = 

Er ↑ = = 

Fe ↑ = = 

Ga ↓ = = 

Hg ↑ ↑ = 

La ↑ = = 

Li ↑ = = 

Mn ↑ ↑ = 

Mo ↑ = = 

Nd ↑ = = 

Ni ↑ = = 

Pb = = = 

Pr ↑ = = 

Rb = = = 

Sb = = = 

Sc = = = 

Se ↑ = = 

Sm ↑ = = 

Sn ↓ = = 

Th = = = 

Tl ↑ = = 

U ↑ = = 

Y ↑ = = 

Yb = = = 

Zn ↑ ↑ = 

Zr = = = 

* From analysis of previous publications [43,44],↑ - element content is higher, ↓ - element content is lower, = - no 

difference 

 

Aluminum  

Al is the most widely distributed metal in the environment. Environmental media may be 

contaminated by Al from anthropogenic sources and through the weathering of rocks and minerals 



 

[60]. The trace element Al is not described as essential, because no biochemical function has been 

directly connected to it. Toxic actions of Al induce oxidative stress, immunologic alterations, 

genotoxicity, and other disorders, including cell membrane perturbation, apoptosis, necrosis and 

dysplasia [60]. Furthermore, it was shown in experimental and epidemiological studies that Al can 

affect thyroid iodide uptake and hormones secretion [61,62]. 

 

Chromium 

Cr-compounds are cytotoxic, genotoxic, and carcinogenic in nature. Some Cr forms, including 

hexavalent chromium (Cr
6+

), are toxicants known for their carcinogenic effect in humans. They 

have been classified as certain or probable carcinogens by the International Agency for Research on 

Cancer [63]. The lung cancer risk is prevalent in pigment chromate handlers, ferrochromium 

production workers, stainless steel welders, and chrome-platers [64]. Except in Cr-related industries 

and associated environments, Cr intoxication from environmental exposure is not common. 

However, it was found, that drinking water suppliesin many geographic areas contain chromium in 

the +3 and +6 oxidation states. Exposure of animals to Cr
6+ 

in drinking water induced tumors in the 

mouse small intestine [65]. Many other animal experiments and in vitro studies demonstrate also 

that Cr can induce oxidative stress and exert cytotoxic effects [66]. Besides reactive oxygen species 

(ROS) generation, oxidative stress, and cytotoxic effects of Cr exposure, a variety of other changes 

like DNA damage, increased formation of DNA adducts and DNA-protein cross-links, DNA strand 

breaks, chromosomal aberrations and instability, disruption of mitotic cell division, chromosomal 

aberration, premature cell division, S or G2/M cell cycle phase arrest, and carcinogenesis also occur 

in humans or experimental test systems [64]. Recently, in acase-control study on the association of 

TE exposure and TBNs it was shown that Cr is a potential influencing factor for the risk of thyroid 

tumor and goiter [67]. 

 

Mercury 

Hg is one of the most dangerous environmental pollutants [68].The growing use of this metal in 

diverse areas of industry has resulted in a significant increase of environment contamination and 

episodes of human intoxication.Many experimental, epidemiologic, and occupational studies of Hg 

in different chemical states shown significant alterations in thyroid hormones metabolism and 

thyroid gland parenchyma [67,69,70]. Moreover, Hg was classified as certain or probable 

carcinogen by the International Agency for Research on Cancer [63]. For example, in Hg polluted 

area thyroid cancer incidence was almost 2 times higher than in adjacent control areas [71].  

 

Manganese 

Mnis an essential micronutrient because this TE acts as a co-factor in many enzymatic reactions 

involved in the metabolisms of lipid, protein, carbohydrate and amino acid, etc. [72]. The diet, 

natural and anthropogenic contaminatedenvironment are the main sources of Mnexposure in general 

populations.It was found in many experimental and epidemiologicstudies that excessive 

environmental Mn exposure may affect the balance of thyroid hormone homeostasis via decreasing 

serum thyroid hormone levels, including T3 and T4[72]. Furthermore, recently, in a case-control 

study on the association of TE exposure and TBNs it was shown that Cr is a potential influencing 

factor for the risk of thyroid tumor and goiter [67]. 

 

Thorium 

Th isa naturally radioactive TE, which effects by its chemical toxicity and radiation on skeleton, 

nervous and endocrine systems. The results of many experimental studies indicate that Th 

administration exerts hazardous effects on the neuroendocrine axis andcausesthe imbalance of 

thyroid hormones and structural changes in thyroid gland [73,74]. Moreover, an epidemiologic and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075591/#B1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616488/#B1-ijerph-16-02157


 

clinicopathologic study found an apparentincreased prevalence of both benign and malignant 

thyroid disease in the group of patients treated with Th-contained compound (Thorotrast) [75]. 

 

Zinc 

Zn, as a trace metal,has structural, catalytic and regulatory roles in normal and pathophysiology. 

This TE is a constituent of more than 3000 proteins and is a cofactor for over 300 enzymes [76]. Zn 

is an essential mediator of cell proliferation and differentiation through the regulation of DNA 

synthesis and mitosis. Zn also affects DNA repair pathways by regulating multiple intracellular 

signaling pathways and altering proteins involved in DNA maintenance [77]. This metal also 

maintenance the balance ofa cellular redox [78]. Thus, Zn is important cofactors in diverse cellular 

processes. Concern the thyroid function, Zn is involved in the synthesis of TSH and important for 

the proper functioning of T3 because T3 nuclear receptors contain Zn ions [79]. However, high Zn 

concentrations are toxic to the cells and the elevated level of Zn mass fractions in thyroid tissue 

may contribute to harmful effects on the gland. There are good reasons for such speculations since. 

experimental and epidemiological data support the hypothesis that Zn overload is a risk factor for 

benign and malignant tumors [77,80-82]. 

 

Characteristically, elevated or reduced levels of TE observed in thyroid nodules are discussed in 

terms of their potential role in the initiation and promotion of these thyroid lesions. In other words, 

using the low or high levels of the TEin affected thyroidtissues researchers try to determine the role 

of the deficiency or excess of each TEin the etiology and pathogenesis of thyroid diseases.In our 

opinion, abnormal levels of many TEin TBNscould be and cause, and also effect of thyroid 

tissuetransformation. From the results of such kind studies, it is not alwayspossible to decide 

whether the measured decrease or increase in TElevel in pathologically altered tissue is the reason 

for alterations or vice versa. 

 

Limitations 

This study has several limitations. Firstly, analytical techniques employed in this study measure 

only fiftyTE(Ag, Al, As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Dy, Er, Eu, Fe, Ga, Gd, Hg, Ho, Ir, La, 

Li, Lu, Mn, Mo, Nb, Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Tb, Te, Th, Ti, Tl, Tm, U, Y, 

Yb, Zn, and Zr) mass fractions. Future studies should be directed toward using other analytical 

methods which will extend the list of TEinvestigated in normal thyroid and in pathologically altered 

tissue. Secondly, the sample size of CG group and, particularly, ofTAgroup was relatively smalland 

prevented investigations of TEcontents in thesegroups using differentials like gender, histological 

types of CG and TA,nodulesfunctional activity, stage of disease, and dietary habits of patients with 

CG and TA.Lastly, generalization of our results may be limited to Russian population. Despite 

these limitations, this study provides evidence on TBNs-specific tissue Ag, Al, Cr, Hg, Mn, Th, and 

Zn level alteration and shows the necessity to continue TEresearch ofTBNs. 

 

CONCLUSION 

 

In this work, TEanalysis was carried out in the tissue samples of CG and TAusing non-destructive 

analytical methodINAA-LLR and destructive analytical method ICP-MS. It was shown that 

combination of these methodsis an adequate analytical tool for the determination of fiftyTE(Ag, Al, 

As, Au, B, Be, Bi, Cd, Ce, Co, Cr, Cs, Dy, Er, Eu, Fe, Ga, Gd, Hg, Ho, Ir, La, Li, Lu, Mn, Mo, Nb, 

Nd, Ni, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Se, Sm, Sn, Tb, Te, Th, Ti, Tl, Tm, U, Y, Yb, Zn, and Zr)content 

in the tissue samples of human thyroid in norm and pathology, including needle-biopsy specimens. 

It was observed that in both CG and TA  tissues contents of Ag, Al, Cr, Hg, Mn, Th, and Zn 

increased, whereas levels of Au, Be, Cs, Pb, Rb, Sb, Sc, Th, Yb, and Zr did not changedin 



 

comparison with normal thyroid tissue.It was not found any differences between TE contents of CG 

and TA. 

From obtained results it was possible to conclude that the common characteristics of CG and TA 

tissue samples were elevated level of Ag, Al, Cr, Hg, Mn, Th, and Znin comparison with normal 

thyroid and, therefore, these TE can be involved in etiology and pathogenesis of such thyroid 

disorders as CG and TA. 
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