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ABSTRACT
Background: Thyroid benign (TBN) and malignant (TMN) nodules are a common thyroid lesion. The differentiation of TMN often remains a clinical challenge and further improvements of TMN diagnostic accuracy are warranted. The aim of present study was to evaluate possibilities of usingdifferences in trace elements(TEs)contents in nodular tissue for diagnosis of thyroid malignancy.
Methods: Contents ofTEs such asbromine (Br), copper (Cu), iron (Fe), iodine (I), rubidium (Rb), strontium (Sr), and zinc (Zn) were prospectively evaluated in“normal” thyroid (NT) of 105 individuals as well as in nodular tissue of thyroids with TBN (79 patients) and to TMN (41 patients). Measurements were performed usingenergy-dispersive X-ray fluorescent analysis.
Results: It was observed that in TMN tissue the mean mass fractions of I and Zn were lower while the mean mass fraction of Rb was higher than in NT and TBN tissue. It was demonstrated that I content is nodular tissue is the most informative parameter for the diagnosis of thyroid malignancy. It was found that “Sensitivity”, “Specificity” and “Accuracy” of TMN identification using the I level in the needle biopsy of affected thyroid tissue was significantly higher than that using US examination and cytological test of fine needle aspiration biopsy. 
Conclusions: It was concluded that study of the I level in a needle biopsy of TNs, obtained by using EDXRF, is a fast, reliable, and very informative diagnostic tool that can be successfully used as an additional test of thyroid malignancy identification.
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INTRODUCTION

Nodules are a common thyroid lesion, particularly in women. Depending on the method of examination and general population, thyroid nodules (TNs) have an incidence of 19–68% [1]. In clinical practice, TNs are classified into benign (TBN) and malignant (TMN), and among all TNs approximately 10% are TMN [2]. It is appropriate mention here that the incidence of TMN is increasing rapidly (about 5% each year) worldwide [2]. Surgical treatment is not always necessary for TBN whereas surgical treatment is required in TMN. Thus, differentiated TBN and TMN have a great influence on thyroid therapy.
Ultrasound (US) examination widely use as the primary method for early detection and diagnosis of the TNs. However, there are many similarities in the US characteristics of both TBN and TMN.For misdiagnosis prevention some computer-diagnosis systems based on the analysis of US images were developed, however as usual these systems for the diagnosis of TMN showed accuracy, sensitivity, and specificity nearly 80% [2,3]. Therefore, when US examination shows suspicious signs, an US-guided fine-needle aspiration biopsy is advised. Despite the fine needle aspiration biopsy has remained the diagnostic tool of choice for evaluation of US suspicious thyroid nodules, the differentiation of TMN often remains a diagnostic and clinical challenge since up to 30% of nodules are categorized as cytologically “indeterminate” [4]. Thus, to improve diagnostic accuracy of TMN, new technologies have to be developed for clinical applications. However, a recent systematic review and meta-analysis of molecular tests in the preoperative diagnosis of indeterminate TNs shown that at the current time there is no perfect biochemical, immunological, and genetic biomarkers to discriminate malignancy [5]. Therefore, further improvements of TMN diagnostic accuracy are warranted.
During the last decades it was demonstrated that besides the iodine deficiency and excess many other dietary, environmental, and occupational factors are associated with the TNsincidence [3,9-11]. Among these factors a disturbance of evolutionary stable input of many trace elements (TEs) in human body after industrial revolution plays a significant role in etiology of TNs[12]. Besides iodine, many other TEs have also essential physiological role and involved in thyroid functions [13]. Essential or toxic (goitrogenic, mutagenic, carcinogenic) properties of TEs depend on tissue-specific need or tolerance, respectively [13].Excessive accumulation or an imbalance of the TEs may disturb the cell functions and may result in cellular proliferation, degeneration, death, benign or malignant transformation [13-15].
In our previous studies the complex of in vivo and in vitro nuclear analytical and related methods was developed and used for the investigation of iodine and other TEs contents in the normal and pathological thyroid [16-22]. Iodine level in the normal thyroid was investigated in relation to age, gender and some non-thyroidal diseases [23,24]. After that, variations of many TEs content with age in the thyroid of males and females were studied and age- and gender-dependence of some TEs was observed [25-41]. Furthermore, a significant difference between some TEs contents in colloid goiter, thyroiditis,thyroid adenoma, and cancer in comparison with normal thyroid and thyroid tissue adjacent to TNswas demonstrated[42-48].
The present study had two aims. The main objective was to assess the bromine (Br), copper (Cu), iron (Fe), iodine (I), rubidium (Rb), strontium (Sr), and zinc (Zn)contents in “normal” thyroid (NT) as well as in nodular tissue of patients who had either TBN or TMN using a combination of non-destructive 109Cd and 241Am radionuclide-induced energy-dispersive X-ray fluorescent analysis (109Cd-EDXRF and 241Am-EDXRF, respectively). The second aim was to evaluate TEs content to aid diagnosis of thyroid malignancy.

MATERIAL AND METHODS

Samples of the NT were obtained from randomly selected autopsy specimens of 105 deceased (European-Caucasian, mean age 4421 years, range 2-87), who had died suddenly. The majority of deaths were due to trauma..All the deceased were citizens of Obninsk and had undergone routine autopsy at the Forensic Medicine Department of City Hospital, Obninsk.A histological examination in the control group was used to control the age norm conformity, as well as to confirm the absence of micro-nodules and latent cancer.
All patients suffered from TBN (n=79, mean ageMSD was 4411 years, range 22-64) and from TMN(n=41, mean ageMSD was 4615 years, range 16-75) were hospitalized in the Head and Neck Department of the Medical Radiological Research Centre (MRRC), Obninsk.Thick-needle puncture biopsy of suspicious nodules of thethyroid was performed for every patient, to permit morphological study of thyroid tissue at these sites and to estimate their TEs contents. In all cases the diagnosis has been confirmed by clinical and morphological results obtained during studies of biopsy and resected materials. Histological conclusions for TBN were: 46 colloid goiter, 19 thyroid adenoma, 8 Hashimoto's thyroiditis, and 6 Riedel’s Struma, whereas for TMN were: 25 papillary adenocarcinomas, 8 follicular adenocarcinomas, 7 solid carcinomas, and 1 reticulosarcoma. Samples of nodular tissuefor109Cd-EDXRF and 241Am-EDXRF analysis were taken from both biopsy andresected materials.
All studies were approved by the Ethical Committees of MRRC. All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments, or with comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
All tissue samples obtained from NT, TBN and TMN were divided into two portions using a titanium scalpel to prevent contamination by TEs of stainless steel [49]. One was used for morphological study while the other was intended for TEs analysis. After the samples intended for TEs analysis were weighed, they were freeze-dried and homogenized [50]. 
To determine the contents of the TEs by comparison with known data for standard, aliquots of commercial, chemically pure compounds and synthetic reference materials were used [51]. Ten subsamples of the Certified Reference Material (CRM) IAEA H-4 (animal muscle) were analyzed to estimate the precision and accuracy of results. The CRM IAEA H-4 subsamples were prepared in the same way as the samples of dry homogenized nodular tissue. 
Details of the relevantfacility for 109Cd-EDXRF determination of Br, Cu, Fe, Rb, Sr, and Zn contents, methods of analysis and the quality control of resultswere presented in our earlier publications concerning the 109Cd-EDXRF analysis of human thyroidand prostate tissue [25,26,47,52].Detailed information on EDXRF determination of I contents with 241Am radionuclidesource, including methods of analysis and the quality control of resultswere presented in our earlier publication concerning the use of 241Am-EDXRF analysis in human thyroidstudy[21].
All samples for TEs analysis were prepared in duplicate, and mean values of TEs contents were used in final calculation. Using Microsoft Office Excelsoftware, some basic statistics, including, arithmetic mean, standard deviationof mean, standard error of mean, minimum and maximum values (range) was calculated for TEs contents in three groups ofthyroidtissue (NT, TBN and TMN).The difference in the results between three groups of sampleswas evaluated by the parametric Student’s t-test and non-parametricWilcoxon-Mann-Whitney U-test.

RESULTS

Table 1depicts certain statistical parameters (arithmetic mean, standard deviation, standard error of mean, range) of the Br, Cu, Fe, I, Rb, Sr, and Zn mass fractionin thyroid tissue samples of three groups – NT,TBN and TMN.

Table 1.Basic statistical parameters of Br, Cu, Fe, I, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis)in normal thyroid (N) and in thyroid benign (TBN)and malignant (TMN) nodules 
	El
	NT, n=105
	TBN, n=79
	TMN, n=41

	
	Mean±SD(SEM)
	Range
	Mean±SD(SEM)
	Range
	Mean±SD(SEM)
	Range

	Br
	13.9±12.0(1.3)
	1.4-54.4
	412±682(98)
	3.20-2628
	139±203(36)
	6.2-802

	Cu
	4.23±1.52(0.18)
	0.50-7.50
	10.2±9.2(1.7)
	2.90-35.2
	14.5±9.4(2.6)
	4.00-32.6

	Fe
	222±102(11)
	47.1-512
	345±416(49)
	52,0-2563
	238±184(30)
	54-893

	I
	1618±1041(108)
	110-5150
	1447±3313(373)
	47.0-28000
	71.6±72.5(11.6)
	2.00-341

	Rb
	9.03±6.17(0.66)
	1.80-42.9
	8.77±4.49(0.53)
	1.00-20.3
	12.4±5.00(0.79)
	4.80-27.4

	Sr
	4.55±3.22(0.37)
	0.10-13.7
	4.48±6.84(0.88)
	0.42-32.0
	6.25±7.83(1.63)
	0.93-30.8

	Zn
	112±44.0(4.7)
	6.10-221
	112.9±51.4(6.1)
	22.0-270
	84.3±57.4(9.2)
	36.7-277


El – element, M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Range – min and max values

The ratios of means and the comparison of mean values of Br, Cu, Fe, I, Rb, Sr, and Znmass fractions in pair of sample groups such as NT and TBN, NT and TMN, and also TBN and TMNis presented in Table2.
Fig. 1 depicts individual data sets for Br, I, Rb, and Zn mass fraction in all samples of NT, TBN,and TMNgroup. 
Parameters of the sensitivity, specificity and accuracy (M±95% confidence interval) of using I mass fraction for the diagnosis of thyroid malignancy are presented in Table 3.An estimation was made fromcomparison individual values in TMN group with those in NT and TBN groups combined, if value of I mass fraction equals 145 mg/kg dry tissue was chosen as upper limit (cut off) for thyroid malignancy. 

Table 2.Ratio of means and the difference between mean values ofBr, Cu, Fe, I, Rb, Sr, and Zn mass fraction(mg/kg, dry mass basis) in normal thyroid (NT) and in thyroid benign (TBN)and malignant (TMN) nodules 
	El
	TBN and NT
	TMN and NT
	TMN and TBN

	
	Ratio
TBN /NT
	p
t-test
	p
U-test
	Ratio
TMN/NT
	p
t-test
	p
U-test
	Ratio
TMN/ TBN
	p
t-test
	p
U-test

	Br
	29.6
	0.0002
	≤0.01
	10.0
	0.0015
	≤0.01
	0.34
	0.017
	≤0.01

	Cu
	6.67
	0.0018
	≤0.01
	3.43
	0.0019
	≤0.01
	1.42
	0.176
	>0.05

	Fe
	1.55
	0.018
	≤0.01
	1.07
	0.610
	>0.05
	0.69
	0.069
	>0.05

	I
	0.89
	0.661
	>0.05
	0.044
	<0.0001
	≤0.01
	0.049
	0.0004
	≤0.01

	Rb
	0.97
	0.757
	>0.05
	1.37
	0.0013
	≤0.01
	1.41
	0.0002
	≤0.01

	Sr
	0.98
	0.948
	>0.05
	1.37
	0.319
	>0.05
	1.40
	0.348
	>0.05

	Zn
	1.00
	0.944
	>0.05
	0.75
	0.0086
	≤0.01
	0.75
	0.012
	≤0.01


El – element, t-test - Student’s t-test, U-test - Wilcoxon-Mann-Whitney U-test,  Bold significant differences




Fig.1. Individual data sets for I, Rb, and Zn mass fractions in samples of normal thyroid (1), thyroid benign nodules  (2)and thyroid malignant nodules (3).

Table 3. Parameters of the sensitivity, specificity and accuracy (M±95% confidence interval) of I mass fraction for the diagnosis of TMN (an estimation is made for “TMN or NT and TBN”)
	Element
	Upper limit for TMN
(cut off)
	Sensitivity 
%
	Specificity 
%
	Accuracy  
%

	I
	145 mg/kg dry tissue
	87±5
	96±2
	94±2


NT - normal thyroid, TBN - thyroid benign nodules, TMN- thyroid malignant nodules

The comparison of our results with published data (from 1990 year) for Imass fraction in NT [27,28,31-34,37,53-72], TBN [54,56,57,62,63,67-80], and TMN [54,56,57,,60, 64-66,73,74,81-85]is shown in Tables 4, 5, and 6, respectively.A number of values for TEs mass fractions were not expressed on a dry mass basis by the authors of the cited references. However, we calculated these values using published data for water (75%) [86] and ash (4.16% on dry mass basis) [87] contents in thyroid of adults. 

Table 4. Reference data of I mass fractions  in “normal” human thyroidpublished from 1990 year
	Reference
	Method
	n
	Age, years
M(Range)
	Sample
preparation
	I, mg/kg dry tissue

	
	
	
	
	
	MSD
	Range

	Handl et al. 1990 [53]
	Chem
	39
	21-86
	-
	1276±664
	-

	Aeschimann et al.1994 [54]
	Chem
	1
	-
	AD
	2028
	-

	Boulyga et al. 1997 [55]
	NAA
	29
	-
	D, A
	1778±381
	-

	
	NAA
	10
	-
	D, A
	1905±635
	-

	Boulyga et al. 1999 [56]
	NAA
	12
	-
	D, A
	-
	800-2950

	Reddyetal. 2002 [57]
	PIXE
	4
	-
	D, Press
	916±88
	-

	Wang et al. 2002 [58]
	-
	21
	Adult
	-
	2712±800
	-

	Murillo et al. 2005 [59]
	Color
	5
	30-43
	AD
	948-3356
	948-3356

	Hansson et al. 2008 [60]
	EDXRF
	10
	57-80
	Intact
	2400
	1200-4800

	Zabala et al. 2009 [61]
	SFI
	50
	17-60
	AD
	5772±2708
	1676-13720

	Zhu et al. 2010 [62]
	ICPMS
	50
	20-60
	AD
	2648
	964-4760

	Błazewicz et al. 2011 [63]
	IC
	50
	M=25
	Fixed
	601±192
	624-4020

	
	
	
	
	Frozen
	623±187
	840 -4000

	Zaichick et al. 2017a[27]
	NAA
	72
	2-80
	Intact
	1786±940
	220-4205

	Zaichick et al. 2017b[28]
	NAA
	33
	3.5-87
	Intact
	1956±1199
	114-5061

	Zaichick etal. 2018a [31]
	EDXRF,NAA
	72
	2-80
	Intact
	1786±940
	220-4205

	Zaichick etal. 2018b[32]
	EDXRF,NAA
	33
	3.5-87
	Intact
	1956±1199
	114-5061

	Zaichick etal. 2018c[33]
	NAA,ICPAES
	33
	3.5-87
	Intact
	1956±1199
	114-5061

	Zaichick etal. 2018d [34]
	NAA,ICPAES
	72
	2-80
	Intact
	1786±940
	220-4205

	Zaichick etal. 2018e[37]
	NAA
	105
	2-80
	Intact
	1841±1027
	114-5061

	Zaichick et al. 2018f[64]
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick et al. 2018g[65]
	NAA
	105
	2-80
	Intact
	1841±1027
	114-5061

	Zaichick et al. 2018h[66]
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick 2021a[67]
	NAA
	105
	2-87
	Intact
	1841±1027
	114-5061

	Zaichick 2021b[68]
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick 2021c[69]
	NAA
	105
	2-87
	Intact
	1841±1027
	114-5061

	Zaichick 2021b[70]
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick 2021a[71]
	NAA,ICPAES
	105
	2-87
	Intact
	1841±1027
	114-5061

	Zaichick 2021b[72]
	NAA,ICPAES
	105
	44±21
	Intact
	1841±1027
	114-5061

	Median of means
	1841

	  Range of means (Mmin - Mmax), 
	601 – 5772

	RatioMmax/Mmin
	9.6

	Allreferences
	27


M – arithmetic mean, SD – standard deviation of mean, 
Chem – chemical method, NAA – neutron activation analysis, PIXE– proton induced X-ray fluorescent emission, Color – colorimetric method, EDXRF– energy dispersive X-ray fluorescentanalysis,  SFI -spectrophotometric flow injection method , ICPMS – inductively coupled plasma mass spectrometry, IC -ion chromatography ,ICPAES – inductively coupled plasma atomic emission spectrometry, 
AD – acid digestion, D – drying at high temperature, A – ashing, AD – acid digestion.


DISCUSSION

As was shown before [21,25,26,47,52] good agreement of the Br, Cu, Fe, I, Rb, Sr, and Zn contents in CRM IAEA H-4 samples analyzed by EDXRF with the certified data of this CRM indicates acceptable accuracy of the results obtained in the study of NT, TBN, and TMNgroups of tissue samples presented in Tables 1-6.
From Table 2, it is observed that in TMNtissue the mass fractions ofI and Zn are significantly lower while the mass fraction ofRbis higher than in NT and TBNtissue.However, as illustrated in Figure 1, I content is the most informative parameter for the diagnosis of TMN (Fig. 1). If the I level of 145 mg/kg dry tissue (about M+SD) is chosen as the upper limit (cut off)forTMN tissue (Fig.1), results for a “malignant or non-malignant” determination from results obtainedwould be the following:
Sensitivity = {correct positive test (CPT)/[CPT + false negative test (FNT)]}×100% = 875%;
Specificity = {correct negative test (CNT)/[CNT + false positive test (FPT)]}×100% = 962%;
Accuracy = [(CPT+CNT)/(CPT+FNT+CNT+FPT)] ×100% = 942%.
The number of peopleexamined was taken into account for calculation of confidence intervals [88]. In other words, if I contents in a nodule biopsy sample do not exceed 145 mg/kg dry tissue, one could diagnose a malignant tumor with an accuracy of 942%. Using the I-test makes it possible to diagnose thyroid malignancy in 875% cases (sensitivity).

Table 5. Reference data of I mass fractions in thyroid benign nodules published from 1990 year
	Reference
	Method
	n
	Age, years
M(Range)
	Sample
preparation
	I, mg/kg dry tissue

	
	
	
	
	
	MSD
	Range

	Nishita et al. 1990[73]
	NAA
	14
	28-71
	Washed
	396±74
	66-1028

	
	NAA
	7
	18-74
	Washed
	115±40
	21-344

	Aeschimann et al.1994[54]
	Chem
	11
	-
	AD
	516
	92-3548

	Bellisola et al. 1998[74]
	NAA
	20
	17-82
	Washed
	660 ±360
	560 -.910

	
	NAA
	22
	
	Washed
	1140 ±1640
	7 - 3810

	
	NAA
	12
	
	Washed
	640 ±660
	3 - 1840

	
	NAA
	6
	
	Washed
	130 ± 120
	4 - 330

	Boulyga et al. 1999[56]
	NAA
	19
	-
	Washed -
	-
	100-4050

	Reddyetal. 2002[57]
	PIXE
	4
	-
	D, Press
	888±88
	-

	Zhu et al.. 2010 [62]
	ICPMS
	50
	20-60
	AD
	2648
	964-4760

	Błazewicz et al. 2011 [63]
	IC
	50
	M=25
	Fixed
	601±192
	624-4020

	
	IC
	50
	
	Frozen
	623±187
	840 -4000

	
	IC
	66
	M=35
	Fixed
	77±14
	41-104

	Zaichick2021 [67] 
	NAA
	46
	30-64
	Intact
	1141±931
	29-3715

	Zaichick2021 [68]
	NAA
	19
	41±11
	Intact
	961±1013
	131-3906

	Zaichick2021 [69]
	NAA
	8
	40±10
	Intact
	951±630
	83-1787

	Zaichick2021 [70]
	NAA
	6
	39±9
	Intact
	276±283
	85-824

	Zaichick2021 [71]
	NAA,ICPAES
	46
	30-64
	Intact
	1141±931
	29-3715

	Zaichick2021 [72]
	NAA,ICPAES
	19
	41±11
	Intact
	961±1013
	131-3906

	Zaichick2021 [75]
	EDXRF,NAA
	46
	30-64
	Intact
	1144±943
	29-3715

	Zaichick2021 [76]
	EDXRF,NAA
	19
	22-55
	Intact
	962±1013
	131-3906

	Zaichick2021 [77]
	EDXRF,NAA
	8
	34-55
	Intact
	951±630
	83-1787

	Zaichick2021 [78]
	NAA
	6
	34-50
	Intact
	276±283
	85-824

	Zaichick2022 [79]
	EDXRF
	79
	22-64
	Intact
	1107±1358
	47-8260

	Zaichick2022 [80]
	NAA,ICPAES
	79
	22-64
	Intact
	1086±1219
	29-8260

	Median of means
	920

	  Range of means (Mmin - Mmax), 
	77 – 2648

	RatioMmax/Mmin
	34.4

	Allreferences
	20


M – arithmetic mean, SD – standard deviation of mean, 
NAA – neutron activation analysis, Chem – chemical method, PIXE– proton induced X-ray fluorescent emission, ICPMS – inductively coupled plasma mass spectrometry, IC - ion chromatography ,ICPAES – inductively coupled plasma atomic emission spectrometry, EDXRF– energy dispersive X-ray fluorescent analysis,
AD – acid digestion 

Thus, I content in a nodule biopsy as biomarker of TMN could become a powerful diagnostic tool.To a large extent, the resumption of thesearch for new methods for diagnosis of TMNwasdue to experience gained in a critical assessment of the limited capacityof US examination andcytological testof fine needle aspiration biopsy[2-4]. In addition tothe US examination and morphological studyof needle-biopsy of the thyroid nodules, the I-test developed in the present study seems to be very useful. Experimental conditions of the present study were approximated to the hospital conditions as closely as possible. In all cases a part of the material obtained from a puncture needle biopsy of the affected site in the thyroid was analyzed. Therefore, our data allow us to evaluate adequately the importance of the I-test for the diagnosis of TMN. Obtained characteristicsforaccuracy, sensitivity, and specificity of the I-test 94, 96, and 87, respectively,are significantly better than these parameters of the US examination (nearly 80%) [2,3]. At that, the I-test gives a definite conclusion for all nodules investigated while using the morphological studyof needle-biopsyup to 30% of nodules are categorized as cytologically “indeterminate” [4]. 

Table 6. Reference data of I mass fractions in thyroid malignant nodules published from 1990 year
	Reference
	Method
	n
	Age, years
M(Range)
	Sample
preparation
	I, mg/kg dry tissue

	
	
	
	
	
	MSD
	Range

	Nishida et al 1990 [73]
	NAA
	8
	21-67
	Washed
	≤23±10
	<DL-67

	Aeschimann et al 1994 [54]
	Chem
	4
	-
	AD
	40
	16-140

	Bellisola et al 1998 [74]
	NAA
	12
	17-82
	Washed
	200±210
	6 -.430

	Boulyga et al 1999 [56]
	NAA
	19
	-
	-
	-
	32-900

	Reddyetal 2002 [57]
	PIXE
	4
	-
	D, Press
	<30
	-

	Hansson et al 2008 [60]
	EDXRF
	7
	21-58
	Intact
	<400
	-

	Zaichick etal. 2018a [64]
	NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick etal. 2018b [65]
	EDXRF,NAA
	41
	46±15
	Intact
	71.8±62
	2-261

	Zaichick etal. 2018c [66]
	NAA,ICPAES
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022a [81]
	EDXRF
	41
	16-75
	Intact
	71.6±72.5
	2-341

	Zaichick. 2022b [82]
	NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022c [83]
	NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022d [84]
	EDXRF,NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022e [85]
	NAA,ICPAES
	41
	16-75
	Intact
	71.8±62
	2-261

	Median of means
	71.8

	  Range of means (Mmin - Mmax), 
	23 – 400

	Ratio Mmax/Mmin
	17.4

	All references
	14


M – arithmetic mean, SD – standard deviation of mean, 
NAA – neutron activation analysis, Chem – chemical method, PIXE– proton induced X-ray fluorescent emission, EDXRF– energy dispersive X-ray fluorescent analysis,ICPAES – inductively coupled plasma atomic emission spectrometry, 
AD – acid digestion, D – drying at high temperature

Mean values obtained for I contents in NT, TBN, and TMN agree well with median of mean values published in scientific literature for period from 1990 up to 2022 year(Table 4, 5, and 6, respectively). The range of means of Ilevel reported in the literature for NT, TBN, and TMN vary widely (Tables 4-6). This can be explained by a dependence of I content on many factors, includingage, gender, ethnicity, mass of the TNs, and the stage of diseases. Not all these factors were strictly controlled in cited studies. However, in our opinion, the leading causes of inter-observer variabilitycan be attributed to the accuracy of the analytical techniques, sample preparation methods, and inability of taking uniform samples from the affected tissues. It was insufficientquality control of results in these studies. In many scientific reports, tissue samples were ashed ordried at high temperature for many hours. In other cases, thyroid samples were treated with solvents (distilled water, ethanol, formalin etc). There is evidence that during ashing, drying and digestion at high temperature some quantities of I are lost as a result of this treatment [89-91].
It is well known that compared to other soft tissues, the human thyroid gland has significantly higher levels of I, because this element plays an important role in its normal functions, through the production of thyroid hormones (thyroxin and triiodothyronine) which are essential for cellular oxidation, growth, reproduction, and the activity of the central and autonomic nervous system. As was shown in present study, malignant transformation is accompanied by a significant loss of tissue-specific functional features, which leads to a drastically reduction in I content associated with functional characteristics of the human thyroid tissue. However, it is necessary to keep in mind that biochemical, or in other words, functional changes in thyroidcells are present from the earliest development of malignancy, which precedes any histopathological indication of malignancy, and these biochemical changes persist during progression of the malignancy and remain present in advanced thyroid cancer. Thus, I depletion is an early step in the malignant proliferation process and I depletion in nodular tissue precedes the morphological transformation of cells from being histopathologicallybenign to malignant.
In our study the portable device was used for EDXRF analysis, with its 241Am source for the excitation of X-ray fluorescence in the needle biopsy sample, was developed by ourselves. More powerful devices for EDXRF analysis with X-ray tubes, including “the total reflection” version (TRXRF) of the method, allow reliable determinations of I and many other TEscontents in a microprobe of a human body tissues and fluids within a few minutes [92]. EDXRF is a fully instrumental and non-destructive method because sample is investigated without requiring any pretreatment or its consumption. Moreover, it is well known that among the most modern analytical technologies, EDXRF is one of the simplest, fastest, most reliable and efficient of the available techniques for TEs determination [92]. There are many different kinds of EDXRF and TRXRF device on the market and technical improvements are frequently announced. Thus, in our opinion, obtaining the Ilevel in a needle biopsy of thyroid nodule, using EDXRF, is a fast, reliable and very informative diagnostic tool that can be successfully used as an additional test for diagnoses of thyroid malignancy. 

CONCLUSION

In this work, TEs analysis was carried out in the tissue samples of NT and thyroidwith TBN and TMNusing EDXRF. It was shown that EDXRF is an adequate analytical tool for the non-destructive determination of Br, Cu, Fe, I, Rb, Sr, and Zn content in the tissue samples of human thyroid, including needle-biopsy material. It was observed that in TMN tissue the mean mass fractions of I and Zn were lower while the mean mass fraction of Rbwas higher than in NT and TBNtissue. It was demonstrated that I content isnodular tissue is the most informative parameter for the diagnosis of thyroid malignancy. It was found that “Sensitivity”, “Specificity” and “Accuracy” of TMN identification using the I level in the needle biopsy of affected thyroid tissue was significantly higher than that using US examination and cytological test of fine needle aspiration biopsy. It was concluded that study of the I level in a needle biopsy of TNs, obtained by using EDXRF, is a fast, reliable, and very informative diagnostic tool that can be successfully used as an additional test of thyroid malignancy identification.
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Table 1.Basic statistical parameters of Br, Cu, Fe, I, Rb, Sr, and Zn mass fraction (mg/kg, dry mass basis)in normal thyroid (N) and in thyroid benign (TBN)and malignant (TMN) nodules 
	El
	NT, n=105
	TBN, n=79
	TMN, n=41

	
	Mean±SD(SEM)
	Range
	Mean±SD(SEM)
	Range
	Mean±SD(SEM)
	Range

	Br
	13.9±12.0(1.3)
	1.4-54.4
	412±682(98)
	3.20-2628
	139±203(36)
	6.2-802

	Cu
	4.23±1.52(0.18)
	0.50-7.50
	10.2±9.2(1.7)
	2.90-35.2
	14.5±9.4(2.6)
	4.00-32.6

	Fe
	222±102(11)
	47.1-512
	345±416(49)
	52,0-2563
	238±184(30)
	54-893

	I
	1618±1041(108)
	110-5150
	1447±3313(373)
	47.0-28000
	71.6±72.5(11.6)
	2.00-341

	Rb
	9.03±6.17(0.66)
	1.80-42.9
	8.77±4.49(0.53)
	1.00-20.3
	12.4±5.00(0.79)
	4.80-27.4

	Sr
	4.55±3.22(0.37)
	0.10-13.7
	4.48±6.84(0.88)
	0.42-32.0
	6.25±7.83(1.63)
	0.93-30.8

	Zn
	112±44.0(4.7)
	6.10-221
	112.9±51.4(6.1)
	22.0-270
	84.3±57.4(9.2)
	36.7-277


El – element, M – arithmetic mean, SD – standard deviation, SEM – standard error of mean, Range – min and max values



Table 2.Ratio of means and the difference between mean values ofBr, Cu, Fe, I, Rb, Sr, and Zn mass fraction(mg/kg, dry mass basis) in normal thyroid (N) and in thyroid benign (TBN)and malignant (TMN) nodules 
	El
	TBN and NT
	TMN and NT
	TMN and TBN

	
	Ratio
TBN /N  
	p
t-test
	p
U-test
	Ratio
TMN/N
	p
t-test
	p
U-test
	Ratio
TMN/ TBN
	p
t-test
	p
U-test

	Br
	29.6
	0.0002
	≤0.01
	10.0
	0.0015
	≤0.01
	0.34
	0.017
	≤0.01

	Cu
	6.67
	0.0018
	≤0.01
	3.43
	0.0019
	≤0.01
	1.42
	0.176
	>0.05

	Fe
	1.55
	0.018
	≤0.01
	1.07
	0.610
	>0.05
	0.69
	0.069
	>0.05

	I
	0.89
	0.661
	>0.05
	0.044
	<0.00001
	≤0.01
	0.049
	0.00041
	≤0.01

	Rb
	0.97
	0.757
	>0.05
	1.37
	0.0013
	≤0.01
	1.41
	0.00024
	≤0.01

	Sr
	0.98
	0.948
	>0.05
	1.37
	0.319
	>0.05
	1.40
	0.348
	>0.05

	Zn
	1.00
	0.944
	>0.05
	0.75
	0.0086
	≤0.01
	0.75
	0.012
	≤0.01


El – element, t-test - Student’s t-test, U-test - Wilcoxon-Mann-Whitney U-test,  Bold significant differences





Table 3. Parameters of the sensitivity, specificity and accuracy (M±95% confidence interval) of I mass fraction for the diagnosis of TMN (an estimation is made for “TMN or NT and TBN”)
	Element
	Upper limit for TMN
(cut off)
	Sensitivity 
%
	Specificity 
%
	Accuracy  
%

	I
	145 mg/kg dry tissue
	87±5
	96±2
	94±2


N - normal thyroid, TBN - thyroid benign nodules, TMN- thyroid malignant nodules


Table 4. Reference data of I mass fractions  in “normal” human thyroidpublished from 1990 year
	Reference
	Method
	n
	Age, years
M(Range)
	Sample
preparation
	I, mg/kg dry tissue

	
	
	
	
	
	MSD
	Range

	Handl et al. 1990 [53]
	Chem
	39
	21-86
	-
	1276±664
	-

	Aeschimann et al. 1994 [54]
	Chem
	1
	-
	AD
	2028
	-

	Boulyga et al. 1997 [55]
	NAA
	29
	-
	D, A
	1778±381
	-

	
	NAA
	10
	-
	D, A
	1905±635
	-

	Boulyga et al. 1999 [56]
	NAA
	12
	-
	D, A
	-
	800-2950

	Reddyetal. 2002 [57]
	PIXE
	4
	-
	D, Press
	916±88
	-

	Wang et al. 2002 [58]
	-
	21
	Adult
	-
	2712±800
	-

	Murillo et al. 2005 [59]
	Color
	5
	30-43
	AD
	948-3356
	948-3356

	Hansson et al. 2008 [60]
	EDXRF
	10
	57-80
	Intact
	2400
	1200-4800

	Zabala et al. 2009 [61]
	PhM
	50
	17-60
	AD
	5772±2708
	1676-13720

	Zhu et al. 2010 [62]
	ICPMS
	50
	20-60
	AD
	2648
	964-4760

	Błazewicz et al. 2011 [63]
	IC
	50
	M=25
	Fixed
	601±192
	624-4020

	
	
	
	
	Frozen
	623±187
	840 -4000

	Zaichick et al. 2017a[27]Age
	NAA
	72
	2-80
	Intact
	1786±940
	220-4205

	Zaichick et al. 2017b[28]Age
	NAA
	33
	3.5-87
	Intact
	1956±1199
	114-5061

	Zaichick etal. 2018a [31]
	XRF,NAA
	72
	2-80
	Intact
	1786±940
	220-4205

	Zaichick etal. 2018b[32]
	XRF,NAA
	33
	3.5-87
	Intact
	1956±1199
	114-5061

	Zaichick etal. 2018c[33]
	NAA,ICPAES
	33
	3.5-87
	Intact
	1956±1199
	114-5061

	Zaichick etal. 2018d [34]
	, NAA,ICPAES
	72
	2-80
	Intact
	1786±940
	220-4205

	Zaichick etal. 2018e[37]
	NAA
	105
	2-80
	Intact
	1841±1027
	114-5061

	Zaichick et al. 2018f[64]Рак
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick et al. 2018g[65]Рак
	NAA
	105
	2-80
	Intact
	1841±1027
	114-5061

	Zaichick et al. 2018h[66]Рак
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick 2021a[67]Зоб
	NAA
	105
	2-87
	Intact
	1841±1027
	114-5061

	Zaichick 2021b[68]Аден
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick 2021c[69]Хашимо
	NAA
	105
	2-87
	Intact
	1841±1027
	114-5061

	Zaichick 2021b[70]Ридел
	NAA
	105
	44±21
	Intact
	1841±1027
	114-5061

	Zaichick 2021a[71]Зоб
	NAA,ICPAES
	105
	2-87
	Intact
	1841±1027
	114-5061

	Zaichick 2021b[72]Аден
	NAA,ICPAES
	105
	44±21
	Intact
	1841±1027
	114-5061

	Median of means
	1841

	  Range of means (Mmin - Mmax), 
	601 – 5772

	RatioMmax/Mmin
	9.6

	Allreferences
	27


M – arithmetic mean, SD – standard deviation of mean, AES – atomic emission spectrometry, ICPAES – inductively coupled plasma atomic emission spectrometry, ICPMS – inductively coupled plasma mass spectrometry, NAA – neutron activation analysis, 3 Methods – NAA+ICPAES+ICPMS
AD – acid digestion, D – drying at high temperature, A – ashing, AD – acid digestion.



Table 5. Reference data of I mass fractions in thyroid benign nodules published from 1990 year
	Reference
	Method
	n
	Age, years
M(Range)
	Sample
preparation
	I, mg/kg dry tissue

	
	
	
	
	
	MSD
	Range

	Nishita et al. 1990[73]
	NAA
	14
	28-71
	Washed
	396±74
	66-1028

	
	NAA
	7
	18-74
	Washed
	115±40
	21-344

	Aeschimann et al. 1994[54]
	Chem
	11
	-
	AD
	516
	92-3548

	Bellisola et al. 1998[74]
	NAA
	20
	17-82
	Washed
	660 ±360
	560 -.910

	
	NAA
	22
	
	Washed
	1140 ±1640
	7 - 3810

	
	NAA
	12
	
	Washed
	640 ±660
	3 - 1840

	
	NAA
	6
	
	Washed
	130 ± 120
	4 - 330

	Boulyga et al. 1999[56]
	NAA
	19
	-
	Washed -
	-
	100-4050

	Reddyetal. 2002[57]
	PIXE
	4
	-
	D, Press
	888±88
	-

	Zhu et al.. 2010 [62]
	ICPMS
	50
	20-60
	AD
	2648
	964-4760

	Błazewicz et al.. 2011 [63]
	IC
	50
	M=25
	Fixed
	601±192
	624-4020

	
	IC
	50
	
	Frozen
	623±187
	840 -4000

	
	IC
	66
	M=35
	Fixed
	77±14
	41-104

	Zaichick2021 [67] Зоб
	NAA
	46
	30-64
	Intact
	1141±931
	29-3715

	Zaichick2021 [68]Аден
	NAA
	19
	41±11
	Intact
	961±1013
	131-3906

	Zaichick2021 [69]Хаш
	NAA
	8
	40±10
	Intact
	951±630
	83-1787

	Zaichick2021 [70]Ридел
	NAA
	6
	39±9
	Intact
	276±283
	85-824

	Zaichick2021 [71] Зоб
	NAA,ICPAES
	46
	30-64
	Intact
	1141±931
	29-3715

	Zaichick2021 [72]Аден
	NAA,ICPAES
	19
	41±11
	Intact
	961±1013
	131-3906

	Zaichick2021 [75] Зоб
	XRF,NAA
	46
	30-64
	Intact
	1144±943
	29-3715

	Zaichick2021 [76]Аден
	XRF,NAA
	19
	22-55
	Intact
	962±1013
	131-3906

	Zaichick2021 [77]Хаш
	XRF,NAA
	8
	34-55
	Intact
	951±630
	83-1787

	Zaichick2021 [78]Ридел
	NAA
	6
	34-50
	Intact
	276±283
	85-824

	Zaichick2022 [79] TBN
	XRF
	79
	22-64
	Intact
	1107±1358
	47-8260

	Zaichick2022 [80] TBN
	NAA,ICPAES
	79
	22-64
	Intact
	1086±1219
	29-8260

	Median of means
	920

	  Range of means (Mmin - Mmax), 
	77 – 2648

	RatioMmax/Mmin
	34.4

	Allreferences
	20


M – arithmetic mean, SD – standard deviation of mean, AES – atomic emission spectrometry, ICPAES – inductively coupled plasma atomic emission spectrometry, ICPMS – inductively coupled plasma mass spectrometry, NAA – neutron activation analysis, 3 Methods – NAA+ICPAES+ICPMS
AD – acid digestion, D – drying at high temperature, A – ashing, AD – acid digestion.


Table 6. Reference data of I mass fractions in thyroid malignant nodules published from 1990 year
	Reference
	Method
	n
	Age, years
M(Range)
	Sample
preparation
	I, mg/kg dry tissue

	
	
	
	
	
	MSD
	Range

	Nishida et al 1990 [73]
	NAA
	8
	21-67
	Washed
	≤23±10
	<DL-67

	Aeschimann et al 1994 [54]
	Chem
	4
	-
	AD
	40
	16-140

	Bellisola et al 1998 [74]
	NAA
	12
	17-82
	Washed
	200±210
	6 -.430

	Boulyga et al 1999 [56]
	NAA
	19
	-
	-
	-
	32-900

	Reddyetal 2002 [57]
	PIXE
	4
	-
	D, Press
	<30
	-

	Hansson et al 2008 [60]
	EDXRF
	7
	21-58
	Intact
	<400
	-

	Zaichick etal. 2018a [64]
	NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick etal. 2018b [65]
	XRF,NAA
	41
	46±15
	Intact
	71.8±62
	2-261

	Zaichick etal. 2018c [66]
	NAA,ICPAES
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022a [81]
	XRF
	41
	16-75
	Intact
	71.6±72.5
	2-341

	Zaichick. 2022b [82]
	NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022c [83]
	NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022d [84]
	XRF,NAA
	41
	16-75
	Intact
	71.8±62
	2-261

	Zaichick. 2022e [85]
	NAA,ICPAES
	41
	16-75
	Intact
	71.8±62
	2-261

	Median of means
	71.8

	  Range of means (Mmin - Mmax), 
	23 – 400

	Ratio Mmax/Mmin
	17.4

	All references
	14


M – arithmetic mean, SD – standard deviation of mean, AES – atomic emission spectrometry, ICPAES – inductively coupled plasma atomic emission spectrometry, ICPMS – inductively coupled plasma mass spectrometry, NAA – neutron activation analysis, 3 Methods – NAA+ICPAES+ICPMS
AD – acid digestion, D – drying at high temperature, A – ashing, AD – acid digestion





Fig.1. Individual data sets for I, Rb, and Zn mass fractions in samples of normal thyroid (1), thyroid benign nodules  (2)and thyroid malignant nodules (3).
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mg/kg dry tissue


Rb
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	10.1	8.6	5.6	8.1	5.3	7.1199999999999983	25.6	19.5	6.3	16.8	5.9	8.3000000000000007	12.9	1.8	2.4	8.1	3.59	4.2	12.2	9.9	24.6	3.48	42.9	6.9	9.5	9.8000000000000007	7.1	9.3000000000000007	10.8	10.6	13.2	7.5	8.9	5.74	7.81	3.5	5.0999999999999996	5.4	16.8	11.9	18.7	8.8800000000000008	4	5.0999999999999996	11	2.9	8.3000000000000007	8.9	13	14.6	12.6	7.8	11.4	10.6	29.4	7.7	6.4	10.4	3.86	5.6	9	6.39	4.2	4.08	2.2000000000000002	6.03	7.8	7.9	4.33	6.9	4.9000000000000004	3.6	11	4.0999999999999996	10.1	8.1	5.18	7.2	8.4600000000000026	4.54	7.06	6.3599999999999985	12.81	9.5300000000000011	6.24	5.6099999999999985	8.01	8.3000000000000007	4	1.2	6.5	6.7	4.9000000000000004	12.8	10.3	2.2000000000000002	1.1000000000000001	8.6	14.3	5.9	9.3000000000000007	11.4	8.3000000000000007	9.4	18.600000000000001	3.2	6.3	4.5	10.3	9.7000000000000011	9	9.3000000000000007	11.1	1	4.5	3.8	8.3000000000000007	5.3	8.9	2.4	12.5	20.3	16.100000000000001	3.8	19.3	12.2	12.7	17.399999999999999	2.5	4.2	7.8	12	5	12.4	4.4000000000000004	13.2	13.4	10.7	16.600000000000001	9.4	10.4	6.4	10.3	7.6	6.5	15.9	6.5	7	4.7	8.6	6	7.6	7.8	10.7	11.3	15	6.1	7	7.9	8.6	8.2000000000000011	9.1	14.8	4.9000000000000004	19.8	6.4	8.7000000000000011	18.5	10	14.2	15.2	16.899999999999999	6.8	4.8	27.4	11.2	15.3	10.200000000000001	19.600000000000001	8.7000000000000011	10.9	10.8	17.399999999999999	17	14	7.4	5.5	10.9	13.6	14.7	13.3	18	11.7	19.5	6.4	9.9	13.8	15.8	
mg/kg dry tissue


