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Abstract 
____________________________________________________________________________________________________ 
 
Objective: A novel subnanomolar anticancer hydroxamic acid containing drug 
candidates, inhibitors of human M1 aminopeptidase (APN) a recent validated 
target and has reached the predicted subnanomolar range of inhibitory potency. 
Methods: A quantitative structure activity relationships (QSAR) complexation 
model has been developed from a compounds of 37 hydroxamic acid derivatives 

(AHD1-37 as training set, TS) to establish a linear correlation between the 
calculated relative Gibbs free energies (GFE: ΔΔGcom) of APN-AHDx complex 
formation and the experimental inhibition potency (Ki

exp). The predictive power of 
the QSAR model was then validated first with 9 other AHDs not included in the TS 
and thereafter with the generation of a 3D-QSAR-PH4 pharmacophore (PH4) 
model to screen the AHD chemical subspace built as a virtual combinatorial library 
of more than 58,644 AHD analogs). Finally the best PH4 hits were evaluated with 
the initial QSAR model for predicted potency (Ki

pre) and pharmacokinetic profile. 

Results: The QSAR model linear correlation equation: pKi
exp=-0.1901×∆∆Gcom + 

8.2886, R2=0.94, the subsequent PH4 model linear correlation between experiment 
and PH4-estimated Ki: pKi

exp=1.0006× pKi
pre + 0.0028, R2=0.79 documents the 

high predictive power of this approach. Finally the screening of the virtual library 
of AHD analogs yielded 95 orally bioavailable candidates the best reaching a 
predicted potency (Ki

pre) of 50 pM and displaying favorable pharmacokinetic 
profile. 
Conclusion: The combined use of molecular modeling (QSAR) and in silico PH4-

based screening of the hypothetical combinatorial library has resulted in proposed 
and predicted potent anticancer candidates with a suitable pharmacokinetic profile. 
Keywords: ADMET, complexation model, Drug design, molecular modeling, 
pharmacophore model, QSAR model.  
 

 
INTRODUCTION 
 

Cancer is one of the most worrying public health 

concerns in the world today. According to Global 
Cancer (GLOBOCAN) 2020 studies, more than 19.3 

million new cases and 10 million cancer-related deaths 

were estimated1. Although cancer survival rates are 

expected to improve and cancer mortality rates have 

declined, cancer remains a leading cause of death 

worldwide. The undesirable side effects of many 

cancer drugs mainly are due to low selectivity towards 

non-cancerous cells2 and long-term use, inevitably is 

accompanied by drug resistance and reduction of their 

efficiency3. Then extensive research has been 

conducted to identify and characterize diverse cancer 
therapeutic targets at the molecular level4. 

Aminopeptidase N (APN/CD13) is one of the most 

studied cancer therapeutic targets5,6; an enzyme 

omnipresent in human body with multipurpose 

enzymatic functions, receptor for others human viruses 

(e.g. coronaviruses)7. Thus, APN is inescapable in the 

regulation of protein turnover in almost all of the 
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organisms8-12, it dysregulation occurs in practically all 

types of human malignancies13. APN has been 

observed in several types of cancer14-18. APN activity 

impact metastasis, a complex biological process that 

concourse to more than 90% of cancer-related 
deaths19,20. APN is a Metallo aminopeptidase in the 

family of M121, characterized by a single zinc ion, 

involved in zinc binding and a motif substrate 

recognition GXMEN21,22,23,24. The x-ray crystal 

structure of human APN was reported by Wong et 

al.,21,25. Among the APN inhibitors anticancer 

candidates, bestatin (1) is the most studied competitive 

one26 against gastric, lung cancer and acute myeloid 

leukemia, and acute non-lymphatic leukemia27-33. 

Another APN inhibitor, Tosedostat (2) is an orally 

bioavailable prodrug converted to a pharmacologically 

active drug inside cells34-38. Later Jisook Lee et al., 

repurposed the compound (3) N-(2-(hydroxyamino)-2-
oxo-1-[3',4',5'-trifluoro(1,1'-biphenyl)-4-

yl]ethyl)pivalamide reporting it as a novel APN 

inhibitor more potent than bestatin (1) and Tosedostat 

(2). Moreover they synthesized a series of hydroxamic 

acid inhibitors (4) to optimize binding interactions 

around and beyond the S1' subsite of APN, the most 

potent being compound (5) in the low nanomolar 

range, Kiexp=4.5 nM39. 

                        
                                                Bestatin (1)                               Tosedostat (2)                                (3) 
                                             Ki

exp =  2370 nM                            Ki
exp =  1180 nM                    Ki

exp =  118 nM 

                                                                                                         
                                                                                    (4)                                              (5) 

                                                             Ki
exp = 4.5 nM 

Figure 1: Inhibitors of APN. 

 

In this work, QSAR ‘complexation’ model was built, 

starting from crystal structure of APN-AHD1 complex 

(Ki=4.5 nM, PDB entry 4FYR)39. In active site the key 

ligand-receptor interactions of APN-AHD1 complex 
shown on Figure 2 in 2D scheme were considered. 

Gibbs free energies of ligand-receptor complex 

formation (∆∆Gcom) were calculated for the series of 

molecules and correlated them with the observed 

biological activities. The resulting quantitative 

structure-activity relationships model (QSAR), which 

employs the computed parameter ∆∆Gcom was able to 

explain approximately 94% of the variation in the 

observed Kiexp. The QSAR model allowed structure-

based design of novel AHD analogs. The identified 

virtual hits reached predicted inhibitory activities Kipre 

against the APN in the sub nanomolar concentration 

range. Metrics describing interactions at the active site 

of APN were assessed from analysis of the X-ray 
crystal structure of APN (PDB code 4FYR) in complex 

with one of the most active inhibitors studied in this 

work (5)39. The catalytic zinc binding group in the 

active site is coordinated by a catalytic triad His388, 

His392 and Glu411 (not shown in the 2D diagram in 

Figure 2), and the S1 pocket with Asn350, Ala351, 

Arg363, Gln857 Asp858, Thr860, Ser861, Phe896 and 

Ser897. Also, a deep hydrophobic pocket S1' with 

residues Arg381, Ser415, Glu419, Tyr419 Arg442 and 

Tyr477. 

 

 
Figure 2: APN–(4) interactions at active site depicted in 2D. 
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Table 1: Training set (AHD1-37) and validation set (VAHD1-9) APN inhibitors39 used in the elaboration of 

QSAR model of inhibitor binding. 

 
Training 

set 
AHD1 AHD2 AHD3 AHD4 AHD5 AHD6 AHD7 AHD8 

R 

 

  

 

 
 

 

 

Kiexp (nM) 4.5 8.2 19.2 23.4 29.1 37.3 43.1 49.1 

Training 

set 
AHD9 AHD10 AHD11 AHD12 AHD13 AHD14 AHD15 AHD16 

R 

 

 

 

 

 

 
 

 

Kiexp (nM) 71.2 82.1 111 119 131 137 138 156 

Training 

set 
AHD17 AHD18 AHD19 AHD20 AHD21 AHD22 AHD23 AHD24 

R 

 

 

 

 
 

 

 

 

Kiexp (nM) 158 163 172 182 185 188 205 235 

Training 

set 
AHD25 AHD26 AHD27 AHD28 AHD29 AHD30 AHD31 AHD32 

R 

 

 

 

 

 

 

 

 

Kiexp (nM) 277 348 366 430 442 462 522 631 

Training 

set 
AHD33 AHD34 AHD35 AHD36 AHD37 

   

R 

 

 

 

 

 

   

Kiexp (nM) 704 745 919 978 4420 
   

Validation 

set 
VAHD1 VAHD2 VAHD3 VAHD4 VAHD5 VAHD6 VAHD7 VAHD8 VAHD9 

R 

 

 

−C(CH3)3 

  

 

 

−CH3 

 

Kiexp (nM) 40 102 118 170 175 240 497 560 604 
The R group is numbered in the column of the Table as R group index. 

METHODS 

 

Training and validation sets 
The literature had been used for training and validation 

sets inhibitors of hydroxamic acid analogs of human 

APN39. Their Ki
exp covers a very wide range 

(4.5 ≤ Ki
pre ≤ 4,420 nM), more than four orders of 

magnitude, suitable for a reliable QSAR model. Out of 

a total of 46 compounds, 37 were used for the training 

set (TS) and 9 for the validation set (VS). 
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Table 2: Gibbs free energy (binding affinity) and its components for the training set of APN inhibitors AHD1-

37 and validation set inhibitors VAHD1-939. 
Training Seta MW

b ∆∆HMM
c ∆∆Gsol

d ∆∆TSvib
e ∆∆Gcom

f Kiexp g 
AHD1 493 0.00 0.00 0.00 0.00 4.5 
AHD2 494 -0.64 1.83 -0.70 1.89 8.2 
AHD3 440 2.78 1.71 1.28 3.20 19.2 
AHD4 441 1.89 2.57 1.94 2.52 23.4 
AHD5 434 2.29 3.21 0.72 4.79 29.1 

AHD6 460 5.15 2.12 2.42 4.86 37.3 
AHD7 448 5.31 2.23 2.33 5.21 43.1 
AHD8 460 4.82 3.24 1.53 6.53 49.1 
AHD9 443 5.61 0.79 0.81 5.59 71.2 
AHD10 443 5.71 1.01 0.66 6.06 82.1 
AHD11 439 5.99 2.34 2.42 5.91 111 
AHD12 474 7.88 3.35 4.22 7.00 119 
AHD13 415 7.90 3.75 3.81 7.85 131 

AHD14 446 8.17 2.06 2.85 7.37 137 
AHD15 448 6.20 5.20 3.46 7.94 138 
AHD16 455 8.74 0.09 1.06 7.77 156 
AHD17 432 6.83 3.68 2.01 8.49 158 
AHD18 487 7.20 0.11 0.29 7.02 163 
AHD19 396 6.08 3.91 1.22 8.77 172 
AHD20 471 8.06 1.43 2.03 7.46 182 
AHD21 457 5.99 1.55 -0.80 8.34 185 

AHD22 382 8.18 1.36 1.48 8.05 188 
AHD23 415 5.94 5.38 3.03 8.29 205 
AHD24 430 7.42 3.83 3.80 7.45 235 
AHD25 471 7.24 2.91 1.51 8.65 277 
AHD26 397 8.93 4.13 2.24 10.82 348 
AHD27 416 7.98 3.76 2.41 9.33 366 
AHD28 432 8.83 5.39 2.89 11.33 430 
AHD29 432 7.20 3.80 0.90 10.10 442 
AHD30 430 7.16 6.76 2.47 11.45 462 

AHD31 400 11.12 1.37 2.07 10.42 522 
AHD32 485 8.97 3.39 2.91 9.45 631 
AHD33 418 11.93 0.28 1.02 11.19 704 
AHD34 430 10.19 3.44 2.05 11.58 745 
AHD35 418 10.86 2.05 0.89 12.02 919 
AHD36 444 10.99 2.82 3.28 10.53 978 
AHD37 414 12.70 3.49 -4.81 15.08 4420 

Validation seta MW
b ∆∆HMM

c ∆∆Gsol
d ∆∆TSvib

e ∆∆Gcom
f pKipre/pKiexph 

VAHD1 434 5.31 1.87 0.96 6.23 0.96 

VAHD2 416 5.20 1.77 1.28 5.70 1.03 
VAHD3 380 11.20 3.50 8.46 6.24 1.02 
VAHD4 442 5.69 4.36 2.84 7.20 1.02 
VAHD5 460 8.87 0.67 2.70 6.84 1.03 
VAHD6 479 7.63 2.76 0.64 9.75 0.97 
VAHD7 395 8.87 3.17 2.86 9.18 1.04 
VAHD8 338 12.30 -2.18 2.89 7.23 1.11 
VAHD9 457 10.94 -0.32 2.11 8.50 1.07 

a for the chemical structures of the training set of inhibitors see Table 1; b Mw (g/mol) is the molar mass of inhibitors; c ∆∆HMM (kcal/mol) is the 

relative enthalpic contribution; d∆∆Gsol (kcal/mol) is the relative solvent effect contribution to the GFE change of E-I complex formation e 

−∆∆TSvib (kcal/mol) is the relative entropic contribution of inhibitor to the GFE of E-Ix complex formation; f∆∆Gcom (kcal/mol) is the overall 

relative GFE change of E-Ix complex formation: ∆∆Gcom ≈∆∆HMM + ∆∆Gsol − ∆∆TSvib; gKi
exp (nM) is the experimental inhibitory concentration of 

APN obtained from ref39; hratio of predicted and experimental half-maximal inhibition concentrations 

 

Model building 
Three-dimensional (3D) molecular models of free 

inhibitors (I), free APN enzyme (E) and enzyme-

inhibitor complexes (E:I), were constructed from the 

high resolution crystal structure (1.91 Å) of a reference 

complex containing the inhibitor compound AHD1 

(PDB code: 4FYR)39 using the graphical interface 
available in the molecular modeling program Insight-

II40 and Discovery studio 2.541.  

 

 

Molecular mechanics 
Modeling of the AHD and PL ligand complexes was 

carried out by molecular mechanics using the CFF 

force field42 as described previously43. 

Conformational research 
The conformations of the free inhibitors were derived 

from their bound conformations in the PL complexes 
by gradual relaxation to the nearest local energy 

minimum, as previously described43. 
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Table 3: Analysis of computed binding affinities ΔΔGcom, its enthalpic component ΔΔHMM, and experimental 

inhibitory concentrations pKi
exp = −log10Ki

exp of HDAs towards APN [39] 
Statistical Data of Linear Regression (A) (B) 

pKi
exp= -0.1866×∆∆HMM + 8.0965 (A) 

pKi
exp= -0.1901×∆∆Gcom + 8.2886 (B) 

Number of compound  n 37 37 
Squared correlation coefficient of regression R2 0.86 0.94 

LOO cross-validated squared correlation coefficient R2
xv 0.86 0.94 

Standard error of regression σ 0.23 0.14 
Statistical significance of regression. Fisher F-test 224.1 584.3 
Level of statistical significance (%) >95 >95 
Range of activities Ki

exp [nM] 4.5 – 4,420 

 

Gibbs Free Energies Solvation 
Ligand-receptor interactions take place in a solvent, 

which contributes to the binding process through 

hydrogen bonding and solvation phenomena. However, 

the electrostatic component of the Gibbs free energy 

(GFE) incorporating the effects of the ionic force 

through solving the nonlinear Poisson-Boltzmann 

equation44 was calculated by the Delphi module of 
Discovery Studio 2.541 as described previously43. 

The calculation of binding affinity expressed as GFE 

complexation has been described in detail earlier43. 

Interaction energy 
The CFF force field was used to calculate the 

interaction energy (Eint) between the enzyme residues 

and the inhibitor, as previously reported43. 

Generation of pharmacophores 
Discovery Studio's 3D-QSAR (PH4) pharmacophore 

generation protocol41 via its Catalyst HypoGen 

algorithmic program45 was used to construct the APN 
inhibition PH4 as described previously43. 

ADME properties 
The pharmacokinetic profile of AHDs was calculated 

by the QikProp program46 as reported earlier43. 

Virtual library generation 
The generation of the virtual library was carried out as 

described in a previous study43. 

ADME based library 
The orientation of the virtual library was made using 

numerous selection criteria as described previously43. 

Pharmacophore-based library search 
The pharmacophore model (PH4) derived from the 
bound conformations of AHDs at the APN active site 

served as a library search tool, as previously 

described43. 

Inhibitory power prediction 
The conformer with the best mapping to the PH4 

pharmacophore in each group of the targeted library 

subset was selected for in silico screening by the 

complexation QSAR model. The ∆∆Gcom calculation of 

each new selected analog was used to predict the APN 

inhibitory potency (Ki
pre) of the targeted AHD analog 

virtual library by inserting this parameter into the 
target-specific scoring function given in equation (1) 

parameterized using the AHD inhibitor training set 

complexation QSAR model39. 

pKi
pre=−log10Ki

pre=a.∆∆Gcom + b                (1) 

   

 
Figure 3: A: plot of correlation equation between pKi

exp and relative enthalpic contribution to the GFE 

(∆∆HMM [kcal.mol-1]). B:  similar plot for relative complexation Gibbs free energies of the APN-AHD complex 

formation ∆∆Gcom [kcal.mol-1] of the training set39. 

 

RESULTS 

 

Training and validation sets 
Forty-six46 AHDs (Table 1) were selected from a series 

of compounds with experimentally determined 
properties and coming from the same laboratory39. 

Their experimental inhibitory activities (4.5 ≤ Ki
pre ≤ 

4420 nM)39 cover a sufficiently wide range of 

concentrations to build a reliable QSAR model. The 

ratio between the sizes of the training and validation 

sets remains a critical point for correct classification 

but is limited by the number of sets of homologous 

compounds available in the literature47. In this study, a 
training set of 37 AHDs and a validation set of another 

9 AHDs (Table 1) were created using the appropriate 

module of Discovery Studio 2.541. 

A B 
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Figure 4: A: 2D schematic interaction diagram of the most potent inhibitor AHD at the active site of APN; B. 

3D schematic interaction of AHD1 at the enzyme active site. 

 

One-descriptor QSAR model 
Each of the 37 training sets (TS) and 9 validations sets 

(VS) APN: AHDx complexes (Table 1) was prepared 

by in situ modification of the crystal structure of the 

refined model (PDB entry code 4FYR) [39] of the 

APN: AHD1 complex as described in the Methods 

section. Additionally, the relative Gibbs free energy 

(GFE) of APN: AHDx ∆∆Gcom complex formation was 

calculated for each of the 46 optimized enzyme-

inhibitor complexes. Table 1 lists the calculated values 
of ∆∆Gcom and its components as defined in equation 

(7), for the TS and VS of hydroxamic acid39. The 

QSAR model explained the variation of the 

experimental inhibitory potency of AHDs (pKi
exp=–

 log10(Ki
exp)) by correlating it with the GFE ∆∆Gcom 

calculated by linear regression (equation (1), Table 2), 

the validity of which by the statistical data of the 

regression is listed in Table 3, equation A and B. The 

correlation of ∆∆HMM and ∆∆Gcom explains 

approximately respectively 86 and 94 percent of the 

variation in pKi
exp data and underlines the role of 

enthalpy contribution in ligand binding affinity.  

 

 
 

 
 

 
Figure 5: A. Molecular Mechanics intermolecular interaction energy Eint breakdown to residue contributions 

in [kcal.mol-1]: (Top) the most active inhibitors AHD1 (4.5 nM) – AHD5 (29.1 nM); B. moderately active 

inhibitors AHD15 (138 nM) – AHD19 (172 nM); C. less active inhibitors AHD33 (704 nM) –

 AHD37 (4420 nM), Table 239 
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Table 4: Parameters of 10 generated PH4 pharmacophoric hypotheses for APN inhibitor after Cat-Scramble 

validation procedure (49 scrambled runs for each hypothesis at the selected level of confidence of 98%). 

Hypothesis RSMDa R2b Total Costc Costs Differenced Closest Random
e 

Hypo 1 6.641 0.89 868.1 2995.3 1459.4 
Hypo 2 9.523 0.75 1736.1 2127.2 1459.9 
Hypo 3 9.689 0.74 1793.6 2069.8 1852.9 
Hypo 4 9.728 0.74 1805,6 2057.7 1959.5 
Hypo 5 9.748 0.73 1814.1 2049.3 1986.6 
Hypo 6 9.767 0.73 1821.1 2042.3 2003.2 
Hypo 7 9,790 0.73 1828.8 2034.6 2043.6 
Hypo 8 9.823 0.73 1842,5 2020.8 2050.8 
Hypo 9 9.826 0.73 1843.7 2019.6 2071.5 
Hypo 10 9.842 0.73 1844.8 2018.8 2114.8 
Fixed Cost 0 0 49.63   

Null Cost 14.387 0 3863.34   

Configuration cost = 14.50; a root mean squared deviation; b squared correlation coefficient; c overall cost parameter of PH4 pharmacophore; d cost 

difference between Null cost and hypothesis total cost; e lowest cost from 49 scrambled runs at a selected level of confidence of 98%. 

 

The regression coefficient R2 of ∆∆Gcom attesting that 

structural information derived from 3D models of 

APN–AHDx complexes should conduct to reliable 

prediction of APN inhibitory potencies for novel AHD 

analogues (sharing the same binding mode) based on 
the QSAR B model, Table 3. 

Binding mode of AHDs 
The new series of Hydroxamic Acid used in this work 

has been synthesized39. Indeed, hydroxamic acids are 

used as metal ion chelators and the presence of the acid 

function in their molecular structure makes them 

particularly important for the inhibition of APN. Active 

site have been assessed from the X-rays crystal 

structure analysis of APN (PDB code 4FYR) in 

complex with one of the most active studied inhibitors 

in this work39. 

Interaction Energy 
The analysis of the interaction energy (IE) diagram per 
residue provides additional structural information to 

guide choice of the judicious R group to fill in the S1 

and S1' pockets for AHD – APN binding affinity 

improvement. A comparative analysis of computed IE 

for the training set AHDs (Figure 4) divided into three 

classes (highest, moderate, and lowest activity) has 

been carried out to identify the residues for which the 

contribution to binding affinity could be increased. 

 

 

  

Figure 6: A: Features coordinates of centers, B: Distances between centers, C: angles between centers of 

pharmacophoric features, D: mapping of pharmacophore of APN inhibitor with the most potent molecule 

AHD1. E: Correlation plot of experimental vs. predicted inhibitory activity. 
Feature legend: HYD = Hydrophobic (cyan), HBA = Hydrogen bond Acceptor (green), HBD = Hydrogen bond Donor (pink).  

A B C 

D 

E 
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Table 5: R1 and R2-groups (fragments, building blocks, substituent’s) used in the design of the initial diversity 

virtual combinatorial library. 

 
 

   
R-groups 

  
1 cyclopenta-2,4-diene-1-carbonyl 2 2-methylcyclopenta-2,4-diene-1-carbonyl 3 2-fluorocyclopenta-2,4-diene-1-carbonyl 

4 2-aminocyclopenta-2,4-diene-1-carbonyl 5 2-sulfanylcyclopenta-2,4-diene-1-carbonyl 6 
3-sulfanylcyclopenta-2,4-diene-1-

carbonyl 

7 
2,3-bis(sulfanyl)cyclopenta-2,4-diene-1-

carbonyl 
8 2-chlorocyclopenta-2,4-diene-1-carbonyl 9 

3-chlorocyclopenta-2,4-diene-1-

carbonyl 

10 2,3-dichlorocyclopenta-2,4-diene-1-carbonyl 11 3-bromocyclopenta-2,4-diene-1-carbonyl 12 
2-bromocyclopenta-2,4-diene-1-

carbonyl 

13 2,3-dibromocyclopenta-2,4-diene-1-carbonyl 14 2-iodocyclopenta-2,4-diene-1-carbonyl 15 3-iodocyclopenta-2,4-diene-1-carbonyl 

16 2,3-diiodocyclopenta-2,4-diene-1-carbonyl 17 amino(cyclopenta-2,4-dien-1-yl)methyl 18 
amino-(2-fluorocyclopenta-2,4-dien-1-

yl)methyl 

19 
amino-(2,3-difluorocyclopenta-2,4-dien-1-

yl)methyl 
20 

amino-(2-sulfanylcyclopenta-2,4-dien-1-

yl)methyl 
21 

amino-[2,3-bis(sulfanyl)cyclopenta-2,4-

dien-1-yl)methyl 

22 
2,3-bis(sulfanyl)cyclopenta-2,4-dien-1-

yl)methyl-(sulfanylamino)methyl 
23 

sulfanylamino-(2-sulfanyl)cyclopenta-2,4-

dien-1-yl)methyl 
24 

sulfanylamino-(3-sulfanyl)cyclopenta-

2,4-dien-1-yl)methyl 

25 
3-fluorocyclopenta-2,4-dien-1-yl-

(sulfanyamino)methyl 
26 

2-fluorocyclopenta-2,4-dien-1-yl-

(sulfanyamino)methyl 
27 

2,3-difluorocyclopenta-2,4-dien-1-yl-

(sulfanyamino)methyl 

28 
2,3-bis(sulfanyl)cyclopenta-2,4-dien-1-

yl)methyl-(fluoroamino)methyl 
29 

fluoroamino-(2-sulfanylcyclopenta-2,4-dien-

1-yl)methyl 
30 

fluoroamino-(3-sulfanylcyclopenta-2,4-

dien-1-yl)methyl 

31 
fluoroamino-(3-fluorocyclopenta-2,4-dien-1-

yl)methyl 
32 

2,3-difluorocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 
33 

2,3-dichlorocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 

34 
2-chlorocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 
35 

3-chlorocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 
36 

3-bromocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 

37 
2,3-dibromocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 
38 

2-bromocyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 
39 

2-carbamoylcyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 

40 
3-carbamoylcyclopenta-2,4-dien-1-yl-

(fluoroamino)methyl 
41 

2-carbamoyl-3-fluoro-cyclopenta-2,4-dien-1-

yl-(fluoroamino)methyl 
42 

2-carbamoyl-3-chloro-cyclopenta-2,4-

dien-1-yl-(fluoroamino)methyl 

43 
3-amino-2-carbamoyl--cyclopenta-2,4-dien-1-

yl-(fluoroamino)methyl 
44 (2-carbamoylphenyl) formate 45 (3-carbamoylphenyl) formate 

46 (4-carbamoylphenyl) formate 47 (2-sulfanylphenyl) formate 48 (3-sulfanylphenyl) formate 

49 (4-sulfanylphenyl) formate 50 [2,3-bis(sulfanyl)phenyl] formate 51 2-methanimidoylbenzamide 

52 Phenylmethanimine 53 3-methanimidoylbenzamide 54 4-methanimidoylbenzamide 

55 2-methanimidoylbenzenethiol 56 3-methanimidoylbenzene-1,2-dithiol 57 3-methanimidoylbenzenethiol 

58 4-methanimidoylbenzenethiol 59 (Z)-N-fluoro-1-(2-fluorophenyl)methanimine 60 
(Z)-N-fluoro-1-(3-

fluorophenyl)methanimine 

61 (Z)-1-(3-bromophenyl)-N-fluoro-methanimine 62 
(Z)-1-(2-bromophenyl)-N-fluoro-

methanimine 
63 

(Z)-1-(2-chlorophenyl)-N-fluoro-

methanimine 

64 (Z)-1-(3-chlorophenyl)-N-fluoro-methanimine 65 
(Z)-N-bromo-1-(3-

chlorophenyl)methanimine 
66 

(Z)-N-bromo-1-(3-

bromophenyl)methanimine 

67 (Z)-N-chloro-1-(3-chlorophenyl)methanimine 68 (Z)-N-chloro-1-(2-chlorophenyl)methanimine 69 o-tolylmethanimine 

70 [2-(trifluoromethyl)phenyl]methanimine 71 [3-(trifluoromethyl)phenyl]methanimine 72 3-methylbenzaldehyde 

73 2-formylbenzamide 74 4-formylbenzamide 75 2-sulfanylbenzaldehyde 

76 2,3-bis(sulfanyl)benzaldehyde 77 3-sulfanylbenzaldehyde 78 4-sulfanylbenzaldehyde 

79 2-methylbenzaldehyde 80 2-(trifluoromethyl)benzaldehyde 81 3-(trifluoromethyl)benzaldehyde 

82 2-fluorobenzaldehyde 83 2-(aminomethyl)-6-bromo-benzamide 84 formamide 

85 4-chloropyrazol-1-yl 86 4,5-dichloropyrazol-1-yl 87 5-chloropyrazol-1-yl 

88 3-chloropyrazol-1-yl 89 3-bromopyrazol-1-yl 90 4-bromopyrazol-1-yl 

91 5-bromopyrazol-1-yl 92 4,5-dibromopyrazol-1-yl 93 3,4,5-tribromopyrazol-1-yl 

94 4-sulfanylpyrazol-1-yl 95 4,5-bis(sulfanyl)pyrazol-1-yl 96 5-sulfanylpyrazol-1-yl 

97 5-iodopyrazol-1-yl 98 4-iodopyrazol-1-yl 99 3-iodopyrazol-1-yl 

100 3,4-diiodopyrazol-1-yl 101 3,4,5-triiodopyrazol-1-yl 102 3,4,5-trifluoropyrazol-1-yl 

103 3-fluoropyrazol-1-yl 104 3,4-difluoropyrazol-1-yl 105 4-fluoropyrazol-1-yl 

106 5-fluoropyrazol-1-yl 107 3-aminopyrazol-1-yl 108 4-aminopyrazol-1-yl 

109 5-aminopyrazol-1-yl 110 5-methylpyrazol-1-yl 111 5-ethylpyrazol-1-yl 

112 4-methylpyrazol-1-yl 113 4,5-dimethylpyrazol-1-yl 114 5-(sulfanylmethyl)pyrazol-1-yl 

115 4-sulfanyl-5-(sulfanylmethyl)pyrazol-1-yl 116 5-aminosulfanyl-4-sulfanyl-pyrazol-1-yl 117 4,5-bis(aminosulfanyl)pyrazol-1-yl 

118 4,5-bis(aminosulfanyl)-3-sulfanyl-pyrazol-3-yl 119 5-ethyl-4-methyl-pyrazol-1-yl 120 Phenyl 

121 4-pyridyl 122 3-pyridyl 123 2-pyridyl 

124 1,2-dihydropyridazin-3-yl 125 3,6-dihydropyridazin-4-yl 126 pyrimidin-4-yl 

127 1,3,5-triazin-2-yl 128 pyrimidin-2-yl 129 pyrazin-2-yl 

130 cyclohexyl 131 2-fluorocyclohexyl 132 3-fluorocyclohexyl 
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R-groups 

  
133 4-fluorocyclohexyl 134 1-piperidyl 135 hexahydropyridazin-1-yl 

136 Piperazin-1-yl 137 1,2,4-triazinan-1-yl 138 3,4-difluorocyclopentyl 

139 3-fluorocyclopentyl 140 4-(3-chlorocyclopenta-2,4-dien-1-yl)phenyl 141 
4-(3,4-dichlorocyclopenta-2,4-dien-1-

yl)phenyl 

142 4-(3-fluorocyclopenta-2,4-dien-1-yl)phenyl 143 
4-(3,4-difluorocyclopenta-2,4-dien-1-

yl)phenyl 
144 

4-(3-chloro-4-fluoro-cyclopenta-2,4-

dien-1-yl)phenyl 

145 4-(3-fluorocyclopenta-2,4-dien-1-yl)phenyl 146 
4-(3-fluoro-4-methylcyclopenta-2,4-dien-1-

yl)phenyl 
147 

4-(3,4-difluoro-2-methyl-cyclopenta-

2,4-dien-1-yl)phenyl 

148 
4-(3-chloro-4-methylcyclopenta-2,4-dien-1-

yl)phenyl 
149 

4-(4-chloro-2-methylcyclopenta-2,4-dien-1-

yl)phenyl 
150 

4-(3,4-dichloro-2,5-dimethyl-

cyclopenta-2,4-dien-1-yl)phenyl 

151 4-(5-methyl-3-furyl)phenyl 152 4-(3-furyl)phenyl 153 4-(2-furyl)phenyl 

154 4-(3-sulfanylcyclopenta-2,4-dien-1-yl)phenyl 155 
4-[3,4-bis(sulfanyl)cyclopenta-2,4-dien-1-

yl]phenyl 
156 

4-(3-methyl-4-sulfanyl-cyclopenta-2,4-

dien-1-yl)phenyl 

157 
4-(3-methyl-2-sulfanyl-cyclopenta-2,4-dien-1-

yl)phenyl 
158 

4-[3,4-bis(sulfanyl)cyclopenta-2,4-dien-1-

yl]phenyl 
159 

4-(2-sulfanylcyclopenta-2,4-dien-1-

yl)phenyl 

160 4-(1-thienyl)phenyl 161 4-pyrrol-1-ylphenyl 162 4-imidazol-1-ylphenyl 

163 4-(1H-imidazol-2-yl)phenyl 164 4-oxazol-2-ylphenyl 165 4-(4-methylimidazol-1-yl)phenyl 

166 Adamantyl 167 Fluoro 168 phosphanyl 

169 Iodo 170 diiodo 171 3-fluorophenyl 

172 3,4-difluorophenyl 173 3,5-difluorophenyl 174 4-bromo-3-fluoro-phenyl 

175 2-fluorophenyl 176 4-chloro-2,6-difluoro-pheny 177 2,6-difluorophenyl 

178 2,3,6-trifluorophenyl 179 2,3,5,6-tetrafluorophenyl 180 2,3,4,5,6-pentafluorophenyl 

181 2-chlorophenyl 182 3-chlorophenyl 183 4-chlorophenyl 

184 5-chloro-2-methyl-phenyl 185 5-chloro-2,3-dimethyl-phenyl 186 3,4-dichlorophenyl 

187 3,4,5-trichlorophenyl 188 3-chloro-4,5-difluoro-phenyl 189 3-chloro-4-fluoro-phenyl 

190 3-bromophenyl 191 3,4-dibromophenyl 192 3,4,5-tribromophenyl 

193 2-furyl 194 3-furyl 195 3-thienyl 

196 6-methyl-3-pyridyl 197 Pyrimidin-5-yl 198 cyclopropyl 

199 cycloprop-2-en-1-yl 200 2-fluorocycloprop-2-en-1-yl 201 2-chlorocycloprop-2-en-1-yl 

202 2-bromocycloprop-2-en-1-yl 203 2-iodocycloprop-2-en-1-yl 204 2,3-difluorocycloprop-2-en-1-yl 

205 2-chloro-3-fluoro-cycloprop-2-en-1-yl 206 2-bromo-3-fluoro-cycloprop-2-en-1-yl 207 2-fluoro-3-iodo-cycloprop-2-en-1-yl 

208 2,3-bis(sulfanyl)cycloprop-2-en-1-yl 209 2-iodo-3-sulfanyl-cycloprop-2-en-1-yl 210 2-sulfanylcycloprop-2-en-1-yl 

211 cyclopentyl 212 Cyclopenta-2,4-dien-1-yl 213 Cyclopenten-1-yl 

214 3,4-difluorocyclopenten-1-yl 215 methyl 216 fluoromethyl 

217 difluoromethyl 218 trifluoromethyl 219 chloromethyl 

220 dichloromethyl 221 trichloromethyl 222 bromomethyl 

223 dibromomethyl 224 tribromomethyl 225 Vinyl 

226 (Z)-2-fluorovinyl 227 2,2-difluorovinyl 228 (E)-2-chloro-2-fluoro-vinyl 

229 (E)-2-chlorovinyl 230 2,2-dichlorovinyl 231 (E)-2-bromo-2-chloro-vinyl 

232 2,2-dibromovinyl 233 1-piperidyl 234 morpholino 

235 4-methyl-1-piperidyl 236 4-fluorol-1-piperidyl 237 4,4-difluorol-1-piperidyl 

238 4-(trifluoromethyl)-1-piperidyl 239 4-(trifluoromethyl)piperazin-1-yl 240 4-methylpiperazin-1-yl 

241 3-methylpiperazin-1-yl 242 4-sulfamoylphenyl 243 benzenesulfonyl 

244 (1E,3Z)-2,3,4-trifluorobuta-1,3-dienyl 245 (1E)-2,3,4,4-tetrafluorobuta-1,3-dienyl 246 (E)-2,3,3,3-tetrafluoroprop-1-enyl 

247 2,2-difluorovinyl 248 1,2,4-oxadiazol-3-yl 249 5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl 

250 2-sulfanylacetyl)amino 251 carboxy 252 sulfanylmethyl 

 
However, the comparative study proves that we are the 

same level of IE contributions from active site residues 

for all three classes of inhibitors. Therefore, no 

suggestions of suitable substitutions able to improve 
the binding affinity as we previously reported for 

thymine-like inhibitors of APN. The statistical data 

confirmed validity of the correlation Equations (A) and 

(B) plotted on Figure 3. The ratio pKi
pre/pKi

exp ≈1 (the 

Ki
pre values were estimated using correlation Equation 

B, Table 3) calculated for the validation set VAHD1-9 

documents the substantial predictive power of the 

complexation QSAR model from Table 2. Thus, the 

regression Equation B (Table 3) and computed ∆∆Gcom 
GFEs can be used for prediction of inhibitory potencies 

Ki
pre against APN for novel AHD analogs, provided 

they share the same binding mode as the training set 

hydroxamic acid AHD1-37.  

 

            
              243-242 : Ki = 50 pM           126-242 : Ki = 70 pM          126-158 : Ki = 90 pM                17- 48 : Ki = 130 pM 

 

Figure 7: The best AHD Analogs with scaffold of APN, the name is a concatenation. 
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Figure 8: A: Close up of virtual hit 243-242, the most active designed AHD analog (Ki

pre = 50 pM) at the active 

site of APN; B: Mapping of the AHD 243-242 to APN inhibition pharmacophore; C: 2D schematic interaction 

diagram of the best active designed AHD analog 243-242 at the active site of APN; D: Surface of the active site 

of APN with bound best active designed AHD analog.  
The binding site surface is colored according to residue  hydrophobicity: red = hydrophobic, blue = hydrophilic, and white = intermediate 

 
3D-QSAR Pharmacophore Model 

Generation and validation of pharmacophore 
The active conformation of 37 TS (AHD1-37) were 

used to generated APN inhibition 3D-QSAR 

pharmacophore and rated by 9 VS VAHD1-9 covering 

a large range of experimental activity (4.5 – 4420 nM) 
spanning almost three orders of magnitude. The three 

steps generation process: (i) the constructive, (ii) the 

subtractive, and (iii) the optimization step39 was 

described earlier43.  

Hypotheses were scored according to errors in activity 

estimates from regression and complexity via a 

simulated annealing approach. The top scoring 10 

unique pharmacophore hypotheses were kept, all 

displaying five-point features along with all relevant 

data listed in Table 4. They were selected based on 
significant statistical parameters, such as high 

correlation coefficient, low total cost, and low RMSD, 

Δ=3813.7= null cost (3863.3) – fixed cost (49.63); all 

meaning a high probability (>90%) that the model 

represents a true correlation43. 

 

        
Figure 9: Histograms of frequency of occurrence of individual R-groups in the 95 best selected analogs 

mapping to four features of the PH4 pharmacophore hypothesis Hypo1. 

 

The evaluation of Hypo 1 is the mapping of the best 
active training set AHD1 (Figure 4 (D)) displaying the 

geometry of the Hypo1 pharmacophore of APN 

inhibition. The regression equation for pKi
exp vs. pKi

pre 
estimated from Hypo1: pKi

exp=1.0006× pKi
pre + 0.0028 

almost equivalent to pKi
exp=pKi

pre with a coefficient of 

A 

B C 

D 
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1 and in intercept of 0, plotted on Figure 4 (E) (n=37. 

R2=0.79. R2
xv=0.78. F-test=130.03. σ=0.28, α > 95%) 

is also. Therefore, the PH4 is good potentially to 

choose the new AHD analogs. 

Virtual Screening 
In silico screening of a virtual (combinatorial) library 

can lead to hit identification as it was shown in our 

previous works on inhibitors design48-53. 

Virtual Library 
An initial Virtual library (VL) was generated by 

substitutions at positions for R1 and R2 (Table 5) on 

the scaffold. During the virtual library enumeration, the 

R-groups listed in Table 5 Were attached to in 

positions R1 and R2 of the AHD scaffold to form a 

combinatorial library of the size: R1×R2=252  

252=56 644 analogs. All analogs are matching the 

substitution pattern of the best inhibitor AHD1. These 

AHDs analogs library was generated from fragments 

(chemicals) listed in databases of available chemicals54. 

To design a more target library of reduced size and 

increased content of drug-like molecules, we have 

introduced a set of filters and penalties such as the 
Lipinski rule-of-five (Mw>500 g/mol)55, which helped 

to select a smaller number of suitable AHDs that could 

be submitted to in silico screening. 

In silico screening of library of AHDs 
56 644 analogs of the library was further screening for 

molecular structures matching the 3D-PH4 

pharmacophore model Hypo1 of APN inhibition. 95 

AHDs mapped to at last 4 features of the 

pharmacophore according to the so-called similarity-

property principle (SPP) according to which 

structurally similar compounds exhibit similar 

biological effects against the same target. 
 

Table 6: GFE and their components for the top scoring 95 virtual AHD analogs. The analog numbering 

concatenates the index of each substituent R1 to R2 with the substituent numbers taken from Table 5 

N° Analogs MW
a ∆∆HMM

b ∆∆Gsol
c ∆∆TSvib

d ∆∆Gcom
e Ki

pre  f 

- AHD1 493 0 0 0 0 4500g 

1 1-151 458 4.64 -2.41 2.22 0.01 5120 

2 1-156 459 6.62 -1.17 5.00 0.45 6200 

3 1-159 459 6.41 -1.37 4.14 0.89 7520 

4 1-46 449 5.06 2.34 2.36 5.04 46100 

5 1-73 433 3.92 3.15 1.86 5.22 49930 

6 2-151 459 2.35 -1.68 4.44 -3.77 980 

7 2-156 473 7.20 -1.06 4.28 1.86 11480 

8 2-73 447 -0.49 6.01 3.19 2.33 14100 

9 2-115 445 9.07 -0.95 6.25 1.88 11570 

10 3-18 415 14.08 0.89 5.73 9.24 289720 

11 3-115 448 8.95 1.56 4.30 6.20 76720 

12 4-151 460 3.17 2.17 3.22 2.12 12890 

13 8-151 479 1.10 -1.51 0.64 -1.06 3210 

14 8-115 465 15.16 -1.63 1.81 11.72 855630 

15 9-151 479 3.45 -0.36 0.75 2.34 14180 

16 9-154 493 3.25 -3.79 2.60 -3.14 1290 

17 12-18 492 12.70 1.09 5.23 8.57 215720 

18 17-151 446 13.96 1.31 6.60 8.67 225400 

29 17-159 460 3.57 -2.69 8.67 -7.79 170 

20 17-164 430 7.06 1.84 5.73 3.17 20400 

21 17-48 439 -0.42 -1.71 6.35 -8.48 130 

22 17-49 439 8.42 0.88 5.42 3.87 27700 

23 17-78 423 7.12 -1.66 7.86 -2.40 1780 

24 26-164 481 6.42 0.20 5.07 1.55 10020 

25 31-163 465 2.48 -1.45 5.26 -4.22 800 

26 35-57 475 4.76 3.94 4.96 3.75 26220 

27 59-151 492 4.08 0.84 1.33 3.59 24440 

28 60-151 492 4.73 -4.26 0.52 -0.05 4990 

29 60-163 475 -6.58 7.55 3.65 -2.68 1580 

30 62-250 483 3.89 -3.02 -0.26 1.13 8330 

31 63-18 461 7.36 -1.48 1.35 4.52 36840 

32 64-250 439 4.05 -2.89 0.52 0.64 6750 

33 69-159 484 0.72 0.90 3.83 -2.22 1930 

34 69-57 484 0.34 5.73 6.97 -0.91 3430 

35 69-250 400 -2.31 7.63 1.27 4.05 29910 

36 82-159 489 -0.15 -0.80 3.70 -4.65 670 

37 82-151 475 10.95 -1.37 1.84 7.74 150130 

38 84-151 395 17.43 2.03 2.33 17.12 9099450 

39 84-159 409 19.06 -2.13 5.84 11.08 648460 
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N° Analogs MW
a ∆∆HMM

b ∆∆Gsol
c ∆∆TSvib

d ∆∆Gcom
e Ki

pre  f 

40 85-157 467 5.96 -2.59 3.00 0.36 5970 

41 88-155 499 2.40 -0.95 1.71 -0.26 4550 

42 88-159 467 6.78 -1.21 2.26 3.31 21630 

43 88-115 439 10.25 -1.87 0.07 8.32 193500 

44 102-115 485 10.73 -1.73 -1.99 10.99 621240 

45 102-151 472 6.45 -4.00 -0.25 2.70 16560 

46 102-157 486 6.21 -1.90 0.20 4.11 30790 

47 103-157 450 8.26 -3.21 3.79 1.26 8840 

48 103-158 483 7.81 -7.74 0.86 -0.79 3600 

49 104-151 454 7.54 -4.74 1.09 1.71 10750 

50 104-242 451 5.84 0.25 2.37 3.71 25840 

51 105-159 450 8.05 -4.02 3.33 0.70 6900 

52 106-57 413 5.80 -0.40 2.58 2.82 17450 

53 106-74 425 6.76 -3.43 10.65 -7.32 210 

54 106-158 483 3.75 -3.97 0.55 -0.77 3640 

55 106-151 436 5.27 -1.59 2.14 1.54 9980 

56 106-242 433 3.96 -1.44 2.35 0.17 5500 

57 120-164 413 3.88 -2.91 2.88 -1.92 2200 

58 122-78 407 -3.96 -0.17 4.04 -8.18 140 

59 123-155 476 2.87 -7.48 3.43 -8.04 150 

60 126-158 477 2.31 -9.36 2.10 -9.16 90 

61 126-242 427 -14.40 6.60 2.16 -9.96 70 

62 130-45 439 11.51 1.65 11.83 1.33 9100 

63 130-46 439 10.45 6.78 11.55 5.68 60960 

64 130-57 412 5.80 0.70 8.83 -2.33 1840 

65 139-49 432 9.64 -0.63 7.62 1.39 9360 

66 122-158 476 2.87 -7.48 3.43 -8.04 150 

67 139-58 415 10.63 0.09 8.19 2.52 15340 

68 139-242 435 6.50 0.20 4.61 2.09 12680 

69 182-157 477 5.58 -3.57 2.16 -0.15 4780 

70 182-242 460 2.18 -0.81 1.77 -0.41 4260 

71 127-18 384 3.85 4.58 4.56 3.87 27670 

72 179-116 487 1.12 -1.57 0.74 -1.19 3030 

73 138-58 433 9.57 3.04 7.68 4.93 44010 

74 127-77 409 3.92 4.36 2.40 5.88 66770 

75 193-151 418 7.41 -3.23 2.75 1.44 9570 

76 194-57 395 -10.88 9.17 2.04 -3.75 990 

77 217-78 380 15.52 -12.98 3.63 -1.09 3160 

78 245-78 454 6.91 -2.03 -0.16 5.04 46130 

79 246-78 442 13.07 -9.52 -0.09 3.64 25050 

80 204-28 443 18.78 2.47 4.64 16.61 7273880 

81 214-57 431 3.91 2.92 3.76 3.08 19550 

82 59-115 478 -4.99 1.30 -1.06 -2.63 1620 

83 85-151 453 4.91 -4.23 0.68 0.00 5100 

84 121-242 426 4.45 1.36 2.27 3.54 23970 

85 121-45 434 1.30 -0.55 4.65 -3.89 930 

86 122-250 360 1.88 3.14 4.32 0.70 6920 

87 122-57 406 8.46 1.47 3.24 6.68 94600 

88 123-151 429 4.60 -3.03 1.96 -0.39 4300 

89 125-250 363 1.55 4.32 3.40 2.46 14960 

90 183-151 463 5.64 -4.32 0.62 0.69 6900 

91 189-46 486 9.09 -1.04 2.29 5.75 63020 

92 189-48 475 4.63 -1.32 1.72 1.59 10210 

93 189-77 459 3.95 -0.37 0.91 2.67 16380 

94 251-151 396 9.35 -2.12 1.52 5.71 61910 

95 243-242 490 -16.32 6.03 0.49 -10.78 50 
a Mw is molar mass of inhibitor; b ∆∆HMM is the relative enthalpic contribution to the GFE change of the APN-AHD complex formation ∆∆Gcom 

(for details see footnote pf Table 2); c ∆∆Gsol is the relative solvation GFE contribution to ∆∆Gcom; d ∆∆TSvib is the relative (vibrational) entropic 

contribution to ∆∆Gcom; e ∆∆Gcom is the relative Gibbs free energy change related to the enzyme–inhibitor APN-AHD complex formation ∆∆Gcom ≡ 

∆∆HMM + ∆∆Gsol − ∆∆TSvib; 
f Kipre is the predicted inhibition potency towards APN calculated from ∆∆Gcom using correlation Equation B, Table 

3; g Ki
exp39 is given for the reference inhibitor AHD1 instead of the Ki

pre. 
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Table 7: ADME-related properties of the best designed analogs and known anticancer agents either in clinical 

use or currently undergoing clinical testing computed by QikProp47. 

AHDa #starsb MW 
c Smol 

d Smolhfo
e Vmolf #rotBg HBdon

h HBacc 
i LogPo/w

 j LogSwat
k LogKhsa

l LogB/Bm BIPcaco
n #metabo Ki

prep HOAq %HOAr 

243-242 2 489 750.8 10.2 1343.9 9 4.2 14.4 -1 -3.822 -1.114 -3.753 3.1 1 50 2 29.6 
126-242 1 427 695 10.7 1222.4 8 4.2 12.9 -1 -3.239 -1.078 -3.263 5.8 2 70 2 34.8 
126-158 0 476 780.1 30.4 1391.8 8 3.8 9.4 2.9 -5.645 -0.212 -1.544 119.4 5 90 3 80.9 
17-48 0 439 738.3 43.2 1312.0 10 5 9.9 0.8 -3.264 -0.601 -1.934 9.1 6 130 2 49.1 
122-78 0 407 693.8 10.1 1218.8 8 3 9.9 1.3 -3.967 -0.644 -1.914 63.1 4 140 3 66.8 
17-159 1 459 781.2 54.9 1408.1 9 5 7.4 2.7 -4.730 0.005 -1.447 24.8 7 150 2 67.5 
106-74 1 423 730.2 234.4 1314.9 7 4 10.4 0.4 -3.641 -0.485 -2.930 10.7 3 170 2 47.8 
82-159 1 488 784.5 32.1 1423.7 8 3 8.4 3.5 -6.314 0.081 -1.554 144.2 3 210 3 86.1 
31-163 1 465 774.2 38.3 1375.5 8 4.2 8.4 2.8 -5.694 -0.120 -1.786 88.9 4 800 3 78.5 
AHD1 0 493 771.2 92.2 1362.4 8 3.2 10.4 1.8 -5.410 -0.425 -2.187 36.0 1 4500 3 65.7 
6f 0 457 755.2 92.2 1332.5 8 3.2 10.4 1.4 -4.720 -0.489 -2.360 36.0 1 660 3 63.2 
Phebestin 0 441 767.3 226.8 1402.3 13 3.5 7.2 0.8 -3.527 -0.479 -1.639 8.6 7 

 
2 35.3 

Tosedostat 0 406 730.2 372.6 1313.8 11 2.2 8.6 1.4 -3.066 -0.637 -2.086 67.3 4 
 

3 67.9 
Bestatin 0 308 592.7 242.2 1035.2 10 3.2 5.4 -0.247 -1.877 -0.624 -1.179 13.8 5 

 
2 45.9 

Probestin 0 491 829.4 465.3 1573.1 15 5 11.9 -0.862 -0.929 -0.651 -1.411 0.6 8 
 

1 5.6 
Amastatin 4 474 798.1 509.9 1476.1 16 4.5 10.7 -1.614 -1.464 -1.524 -3.115 0.1 7 

 
1 0 

a designed AHD analogs and known antituberculotic agents, Table 6; b drug likeness, number of property descriptors (24 out of the full list of 46 

descriptors of QikProp, ver. 3.7, release 14) that fall outside of the range of values for 95% of known drugs; * star in any column indicates that the 

property descriptor value of the compound falls outside the range of values for 95% of known drugs 

 

These best fitting analogs (PH4 hits) then underwent 

complexation QSAR model screening. The computed 

GFE of APN-AHDs complex formation, their 

components, and predicted inhibitory potency Ki
pre 

calculated from correlation Equation B (Table 3) is 

listed in Table 6).  

Novel AHD analogs 
The design of virtual library of novel analogs was 

guided by structural information retrieved from the 

AHDs active conformation and the pharmacophore 

model, used for the selection of appropriate 

substituents. The hydrophobic feature of PH4 at the 

position R1 shows clearly the type of group to be 

oriented towards the hydrophobic pocket S1. The 

analysis of frequency of occurrence of R-group during 

the selection of appropriate surrogates for two points of 
attachment: R1-group and R2- group shows that the 

frequency of occurrence of groups R1 and R2 among 

the best resulting from PH4 (Fig. 8) is as follows: for 

the large hydrophobic pocket S1’ filling R2-groups, 

151: 4-(5-methyl-3-furyl)phenyl, 159: 4-(2-sulfanyl-

cyclopenta-2,4-dien-1-yl)phenyl, 250: 2-sulfa-

nylacetyl)amino, 115: 4-sulfanyl-5-(sulfanylmethyl)-

pyrazol-1-yl, 57: 3-methanimidoylbenzenethiol, 242: 

4-sulfamoylphenyl, 158: 4-[3,4-bis(sulfanyl) cyclo-

penta-2,4-dien-1-yl]phe-nyl with occurrences of 16, 8, 

5, 7, 7, 5 respectively are the most represented while 

48: (3-sulfanylphenyl) for-mate with 2 occurrences, 
appears in the highest potency AHD analogs. In the 

smaller hydrophobic pocket S1, filling R1-groups 1: 

cyclopenta -2,4-diene-1-carbonyl, 17: amino 

(cyclopenta -2,4-dien-1-yl)methyl, 106: 5-fluoro-

pyrazol-1-yl with occurrences of 5, 6, 5 is the most 

represented while 243: benzenesulfonyl and 126: 

pyrimidin-4-yl occurrences 1 and 2 appearing in  the 

top 4 highest potency AHD analogs. The best analogs 

from these most commonly used substituents (R1-

group: R2-group) are: 243- 242 (Kipre=0.05 nM); 126-

242 (Kipre=0.07 nM); 126-158 (Kipre=0.09 nM); 17-

48 (Kipre=0.13 nM). Branching larger aliphatic 
moieties in the R2 position for better filling the large 

S1’ pocket and conserving HB interactions and keeping 

almost the size in R1 position for the smaller 

hydrophobic pocket S1 of the AHD analogs 

contributed strongly to an overall improvement in the 

inhibitory activity against human M1 aminopeptidase 

(APN). This relates to the inhibitory potency of the 

best proposed new analogs. 

 

 
Figure 10: Van der Waals component of Molecular Mechanics intermolecular interaction energy (Eint) 

breakdown to residue contributions in EVDW [kcal.mol-1]: of the most active AHD1 and the best analogs. 
 

Pharmacokinetic Profile of Novel AHD Analogs 
The properties related to ADME such as Caco-2 cell 

permeability, blood-brain partition coefficient, octanol-
water partitioning coefficient, aqueous solubility 

number of likely metabolic reactions, serum protein 

binding and another eighteen descriptors related to 

absorption, distribution, metabolism, and excretion 
(ADME) were calculated by the QikProp program46 for 
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the new best AHD analogs (Table 7). The method of 

Jorgensen is used by this program56. Empirical data 

from more than 710 compounds including about 500 

drugs and related hetero-cycles were used to produce 

regression equations correlating experimental and 
computed descriptors resulting in an accurate 

prediction of pharmacokinetic properties of molecules. 

Drug likeness (#stars) - the number of property 

descriptors that fall outside the range of optimal values 

determined for 95% of known drugs out of 24 selected 

descriptors computed by the QikProp, was used as an 

additional ADME-related compound selection 

criterion. The values for the predicted best active 

designed AHDs are compared to those computed for 

current anticancers targeting APN, displaying 

favorable pharmacokinetic profile with low number of 

stars indicating that the computed descriptors do not 
fall outside the range of 95% of known drugs (Table 

7): (c) molar mass: 300 ≤ MW ≤ 500 g.mol-1; (d) total 

solvent-accessible molecular surface, (probe radius 1.4 

Å): 300 ≤ Smol ≤ 1000 Å2; (e) hydrophobic portion of 

the solvent-accessible molecular surface, (probe radius 

1.4 Å): 0 ≤ Smolhfo ≤ 750 Å2); (f) total volume of 

molecule enclosed by solvent-accessible molecular 

surface (probe radius 1.4 Å): 500 ≤ Vmol ≤ 2000 Å3; (g) 

number of non-trivial (not CX3), non-hindered (not 

alkene, amide, small ring) rotatable bonds: 

0 ≤ #rotB ≤ 15; (h) estimated number of hydrogen 
bonds that would be donated by the solute to water 

molecules in an aqueous solution, values are averages 

taken over a number of configurations, so they can 

assume non-integer values: 0.0 ≤ HBdon ≤ 6.0; (i) 

estimated number of hydrogen bonds that would be 

accepted by the solute from water molecules in an 

aqueous solution, values are averages taken over a 

number of configurations, so they can assume non-

integer values: 2.0 ≤ HBacc ≤ 20.0; (j) logarithm of 

partitioning coefficient between n-octanol and water 

phases: -2 ≤ LogPo/w ≤ 6.5; (k) logarithm of predicted 

aqueous solubility: logS, S in [mol.dm–3] is the 
concentration of the solute in a saturated solution that 

is in equilibrium with the crystalline solid: -

6.0 ≤ LogSwat ≤ 0.5; (l) logarithm of predicted binding 

constant to human serum albumin: -1.5 ≤ LogKhsa ≤ 

 1.5; (m) logarithm of predicted brain/blood partition 

coefficient: -3.0 ≤ LogB/B ≤ 1.2; (n) predicted apparent 

Caco-2 cell membrane permeability in Boehringer-

Ingelheim scale in [nm s-1]: BIPcaco < 25 poor, 

BIPcaco > 500 nm.s-1 great; (o) number of likely 

metabolic reactions: 1 ≤ #metab ≤ 8; (p) predicted 

inhibition constants Ki
pre. Ki

pre in pM was predicted 
from computed ∆∆Gcom using the regression Equation 

B shown in Table 3; (q) HOA: human oral absorption: 

1=low, 2 =medium, 3=high; (r) % HOA: percentage of 

human oral absorption in gastrointestinal tract: 

≥ 80%=high. 

 

DISCUSSION 

 

The most comprehensive metrics of APN inhibition by 

hydroxamic acid containing AHDs reported by J. Lee 

et al.39. Intermolecular interactions of AHD1 and 
hAPN including hydrophobic stacking interactions and 

hydrogen bonds were the key determinants for better 

affinity with the target. The exploration of the chemical 

AHD subspace implemented in a diverse virtual library 

with AHDs active conformation yielded the best R1 

and R2 substituent’s to be accommodated by the 
hydrophobic pockets or rooted in other ways such as 

hydrogen bonds and van der Waals contacts. The 

strategy was executed over three orders of magnitude 

of experimental Ki, i.e. three pKi units taking benefit 

from the reported SAR continuity39 making feasible 

activity prediction according similarity-property 

principle (SPP).  

The compound 6f, N-(2-(Hydroxyamino)-2-oxo-1-(3′-

fluoro-[1,1′-biphenyl]-4-yl)ethyl)-4-(methyl-sulfon-

amido) benzamide has been designed by J. Lee et al., 

with the purpose to improve both potency and 

solubility through removal of two fluorine atoms to 
keep only one compared to AHD1 (Ki=4.5±0.8 nM), 

they reached a potency Ki=0.66 ± 0.06 nM57. Used 

AHD analogs potency prediction model computed 

∆∆Gcom=- 2 kcal/mol and a potency Ki=2.1 nM using 

correlation Equation B, Tables 3 and 6, presenting 6f as 

twice more potent than AHD1 and keeping in this way 

the same trend as experimental values according to 

which, 6f is 6-fold more potent than AHD1 regardless 

experimental uncertainties. The computed solubility of 

some AHD analogs (Table 7) is of the same order as of 

6f. 
The predicted most potent analogs 243-242 (50 pM) 

with benzenesulfonyl (243) in R1 and 4-

sulfamoylphenyl (242) in R2, 126-242 (70 pM) bearing 

pyrimidin-4-yl in R1, 126-158 (90 pM) with 4-[3,4-

bis(sulfanyl)cyclopenta-2,4-dien-1-yl]phenyl (158) in 

R2 keep the filling of S1 bringing better interactions 

and fill better the large S1’ hydrophobic pocket 

resulting in better affinity as displayed in Figure 10 

comparing the interaction energy breakdown to APN 

active site residues of the best active TS AHD1 and 

novel analogs. This substantial stabilization will 

undergo medicinal chemistry verification through 
synthesis and biological evaluation. 

Limitations of the study 
The main limitation of this MM – PB study is the lack 

of experimental verification of the predicted novel 

analogs potency. Nevertheless the novel AHD 

analogs – APN complexes’ stabilization is cross 

checkable through Molecular Dynamics runs in order 

to confirm the active site residues’ side chains 

stabilized conformation and by the way that of the 

novel most potent AHD analogs as presented (see 

Figure 8 for example). Unfortunately these time-
consuming MD runs represent a tremendous effort 

we’re preparing to address in due course. 

 

CONCLUSIONS 

 

SAR structural investigation of hydroxamic acid 

derivatives as a novel human M1 aminopeptidase 

(APN) cancer inhibitor from the crystal structure of 

APN: AHD complex guided us while preparing a 

QSAR model for the reliable complexation of APN 

activation that correlates with the calculated relative 
Gibbs free energies to form a complex with observed 
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APN activation potencies. In addition we have derived 

a 3D-QSAR PH4 model from AHD active 

conformation using a training set of 37 and validation 

set of 9 AHDs with known activation activities. Careful 

analysis of interactions between the APN’s active site 
residues and APNs directed us in the design of an 

initial diversity virtual combinatorial library of new 

AHD analogs with multiple substitutions of 

hydrophobic groups in R1 and R2. A library screened 

by matching of the analogs to the PH4 pharmacophore 

permitted selection of a library subset of AHDs. This 

subset of 95 best virtual hits was submitted to 

computation of predicted activation potencies by the 

complexation QSAR model. The hit analogs reached 

predicted activities in the picomolar concentration 

range. The hit designed AHD analogs 243-242 (50 

pM), 126-242 (70 pM), 126-158 (90 pM) and 17-48 
(130pM) are recommended for synthesis and 

subsequent activity evaluation in APN activation 

assays and may lead to a discovery of novel 

hydroxamic potent partial APN agonists. 
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