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Abstract 
____________________________________________________________________________________________________ 
 
Aim: The current study assessed the response of MSG and AL on rats' testes 

histomorphology and homogenate antioxidant markers. 
Methodology: Thirty (30) male wistar rats were allotted to six groups(sample size, 
n=5) by random sampling and exposed to MSG and AL daily and per oral for 7 
days thus: Groups A, distilled water (1 mL Kg−1), B, therapeutic concentration of 
Artemether-lumefantrine, TAL, (1.14 mg Kg−1AL), C, high dose Artemether-
lumefantrine, HAL (5.7 mg Kg−1AL), D, MSG (8000 mg Kg−1), E, TAL (1.14 mg 
Kg−1AL)+ MSG (8000 mg Kg−1) and F, HAL (5.7 mg Kg−1AL)+ MSG (8000 mg 
Kg−1). Alterations in the testes histology and antioxidant markers were assessed 
while data were tested for statistical significance by acceptable protocols.  

Results: MSG mono-therapy altered the rats’ testes anti-oxidation mechanism and 
histology by increasing (p<0.05) glutathione peroxidase (GPX), superoxide 
dismutase (SOD), catalase (CAT), malondialdehyde (MDA), albumin (ALB), total 
protein (TP), and magnesium (Mg), but decreasing (p<0.05) zinc (Zn) levels and 
degenerating spermatids within the seminiferous tubules compared to control, and 
other treatments (except CAT activity in MSG + HAL-fed group that increased 
(p<0.05) above that of MSG–fed rats). These responses following TAL and HAL 
mono-treatments were inconsistent compared to control and MSG mono-therapies. 

These underscore the proclivity of MSG + HAL co-therapy to up-regulate the 
apparent dysfunction in CAT metabolism, and the inconsistency in the apparent 
modulatory responses by AL against effects by MSG mono-therapy in the rats’ 
testes.  
Conclusion: AL caused inconsistent modulation of alterations in rats’ testes 
histology and antioxidant function markers due to MSG assault. The modulation 
may not be sustainable and the alterations may be instead being spiked warranting 
caution in co-feeding AL and MSG to rats. 

Keywords: Artemether-lumefantrine, magnesium, monosodium glutamate, 
oxidative response, testes histomorphology, zinc. 
   

 

INTRODUCTION 
 

Monosodium glutamate (MSG) is the salt variant of 

glutamic acid formed by replacing hydrogen with a 

sodium moiety1. MSG is present in tomatoes and it is 

responsible for the characteristic tomatoes flavour and 

taste2. It is popularly used for enhancing food flavor for 

preparing varied local and intercontinental edible 

products3,4. It is similar to glutamic acid except that one 

proton (H+) in the carboxylic group of glutamic acid is 

replaced with one sodium moiety (Na+)5. Glutamic acid 

(glutamate), is an amino acid but it is not essential for 

the synthesis of proteins in plants and animals6. 
Glutamic acid is central to the metabolism of amino 

acids including the synthesis of arginine, proline and 

other important biomolecules5,7. MSG can dissociate 
easily in water to give out glutamic acid and free 

sodium ion8. This may implicate free sodium ion with 

the MSG-related toxicities. MSG impairs the 

histological and functional integrities of the liver, 

kidney, brain3 and testes2. A recent report implicated 

MSG with significant dysfunction on male 

reproductive system9. These and other adverse 

responses due to MSG treatment were usually 

accompanied by increased oxidative stress. Various 

study reports were able to link MSG adverse outcomes 

with increased oxidative stress. Such increases in 

oxidative stress was equal to diminished antioxidants, 
compared to pro-oxidants, and the attendant collapse in 

antioxidant defense mechanisms2,3,9.  
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Malaria is a disease resulting from the transmission of 

malaria parasites through the bites of female Anopheles 

mosquitoes infected with Plasmodium10,11. Based on a 

recent world health report on malaria, the global 

prevalence and associated death rate due to malaria 
remain high12. The burden due to malaria disease is 

reportedly highest in sub-Saharan countries13. Malaria 

is managed with antimalarials14.The penchant for the 

high resistance by malaria parasites, notably 

Plasmodium falciparium and P. vivax against existing 

drug mono-therapies necessitated the formulation of 

combination therapies10. Artemether-lumefantrine (AL) 

is a potent and choice artemesinin-based antimalarial 

co-therapy widely used against uncomplicated malaria 

caused by P. falciparium10,15. AL comprises 

Artemether (20 mg) and Lumefantrine (120 mg)15. The 

overall bioavailability and pharmacologic action of AL 
can last for a long time as a result of the high stability 

of the second drug constituent, lumefantrine. The 

artemether component of AL initiates rapid clearance 

of malaria parasites for 2 hours while lumefantrine 

lasts for 5 days to mop up any remainder of the 

parasites not cleared by artemether thereby preventing 

any recrudescence15,16. AL is an over the counterdrug17. 

Over the counter drugs are not restricted and are 

obtained with ease but, as speculated earlier, these over 

the counter drugs may increase oxidative stress18. The 

mechanisms of pharmacologic action of artemether 
component of AL include an increased free radicals 

production and a reduction in blood antioxidants10.  

These mechanisms of Artemether action will lead to a 

spike in oxidative stress and, consequently, to oxidative 

damages. Oxidative stress is a situation that results 

when oxidants generated during cellular activities 

could not be cleared through the anti-oxidative reaction 

mechanisms mediated by natural antioxidants19. 

Antioxidants counteract oxidative stress and associated 

oxidative damages by quenching and reducing excess 

free radicals20. The knowledge of antioxidants status 

and metabolism will therefore provide significant 
understanding of the bio-functional state of animal and 

inherent organs. AL may be prone to abuse (and it 

could be consumed together with foods containing 

MSG) which could result to unknown and possibly 

untoward effects on animals' testes as on the liver 

reported earlier21. The testes are an important 

component of the male reproductive system and 

determinant of fertility22. Oxidative responses and 

damages are basic expressions in compromised organ, 

functional and health conditions and these oxidative 

responses were associated with male infertility23,24. 
Adverse effects on the reproductive system due to 

oxidative stress manifest easily on the testes25. This is 

because testes have low vascularity and oxygen 

content26. Possible concomitant effects of MSG and AL 

on the testes could be ascertained from alterations on 

the testes histology and antioxidant markers. These 

underscored the need for the current study with aim to 

assess the response of MSG and AL on rats' testes 

histomorphology and testes homogenate antioxidant 

markers.  

 
 

MATERIALS AND METHODS  

 

Drug and chemicals procurement 

Certified analytical grade of chemicals were used in the 

current study. They were bought along with the kits 
which were products of Randox Laboratories Limited, 

United Kingdom. AL (in the ratio of A:L 20:120 mg 

per tablet) and MSG were obtained from appropriate 

sources near the host institution and used with no other 

purification. 

Animals and experimental design 

Thirty (30) male wistar rats were kept for 7 days to 

acclimatize in the animal facility of the host 

department. They were assigned to six groups and 

exposed to MSG and AL orally and daily for 7 days 

thus: Groups A (1 mL Kg−1 of distilled water), B, 

therapeutic concentration of Artemether-lumefan-trine, 
TAL (1.14 mg Kg−1 of AL), C high dose of 

Arthemether-lumfantrine, HAL (5.7 mg Kg−1 of AL), D 

MSG (8000 mg Kg−1 of MSG) as explained 

previously27, E, TAL + MSG (TAL 1.14 mg Kg−1 of 

AL + MSG 8000 mg Kg−1) and F HAL + MSG (HAL 

5.7 mg Kg−1 of AL + MSG 8000 mg Kg−1). All rats 

were allowed free access to feed (produced by Top 

feed limited, Nigeria) and clean water. The exposure 

was through gavages-assisted oral cavity. TAL 

concentration was calculated from the normal 

therapeutic dose of four tablets (80:480 mg of A:L) for 
an average weighing man of 70 Kg while HAL 

concentration was the product of TAL concentration 

multiplied by five21. 

Ethical consideration and approval 

The study followed the animal use ethics of the host 

institution based on acceptable guidelines28 with 

approval number: ACE-ODUS/14-215632019. 

Testes tissues collection, homogenization and 

preparation for histological assessment 

The rats’ testes were excised after dissection following 

humane sacrifice after overnight fasting on day 8. A 

part was homogenized as described and referenced 
recently29. The other part of the testes tissue sample 

was fixed in 10% phosphate formalin buffer for 

histologic examination as described previously30. 

Determination of testes homogenate antioxidant 

markers 

CAT, SOD and GPX activities, were determined 

following the instructions on the manual accompanying 

the respective Randox kits which were respectively 

based on the methods of Sinha31, Xin et al.,32 and 

Paglia and Valentine33. MDA concentration was 

determined according to Wallin et al.,34 while Zn 
concentration was determined according to Johnsen 

and Eliasson35. Mg concentration was estimated 

according to Farrell36 while TP and ALB 

concentrations were respectively determined according 

to methods explained previously37.  

Statistical analysis 

Data analysis of variance (ANOVA) and test for 

statistical significant difference in mean followed 

Duncan’s multiple range test principle. These were 

processed with Windows SPSS (20.0) set at p<0.05 

confidence level. Results obtained were represented as 
the mean ± standard deviation (SD) for 5 rats. 
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RESULTS  

 

Exposing rats to MSG mono-therapy caused an 

overriding significant increase (p<0.05) in the rats’ 

testes GPX activity in contrast to other treatments. 
Exposure of rats to TAL mono-treatment (followed by 

HAL-fed, MSG + TAL-fed and MSG + HAL-fed) 

caused the least increase (p<0.05) compared to the 

control but significantly decreased (p<0.05) the most 

compared to MSG-treatment (Figure 1) (Values are 

mean±SD; n=5. Different letters a, b, c, d, e, f 

(arranged from a=least to f =highest) are significantly 

different at p<0.05. MSG=8000 mg Kg−1, 

TAL=1.14:6.85 mg Kg−1 of A: L. HAL=5.7:34.25 mg 

Kg−1 of A: L). 

In Figure 2, the study outcome revealed that exposing 

rats to MSG mono-therapy caused a significant 

increase (p<0.05) in the rats’ testes SOD activity above 
that of the control and other treatments. Exposure of 

rats to TAL mono-treatment (followed by HAL-fed) 

decreased significantly (p<0.05) below that of the 

control and the other treatments while exposure to 

MSG + HAL (followed by MSG + TAL) co-therapy 

increased significantly (p<0.05) above that of the 

control but decreased significantly (p<0.05) below that 

of the MSG-treatment. 

 

 
Figure 1: Response of AL and MSG on GP x activity (IU/L) in rats’ testes homogenate. 

 

 
Figure 2: Response of AL and MSG on SOD activity (IU/L) in rats’ testes homogenate. 

 

Exposing rats to MSG mono-therapy caused an 

increase (p<0.05) in the rats’ testes CAT activity in 

contrast to control and other treatments except MSG + 

HAL-fed. Exposure of rats to MSG + TAL co-therapy 

decreased (p<0.05) testes CAT activity compared to 

the control and the other treatments (Figure 3). In 
Figure 4, the study outcome revealed that exposing rats 

to MSG mono-therapy caused an increase (p<0.05) in 

the rats’ testes MDA concentration above that of the 

control and other treatments. Exposure of rats to HAL 

mono-treatment (followed by TAL-fed) decreased 

(p<0.05) below that of the control and the other 

treatments while exposure to MSG + HAL (followed 

by MSG + TAL) co-therapy increased (p<0.05) above 

that of the control and others except MSG mono-

therapy. Rats that were exposed to MSG mono-therapy 

had an increased (p<0.05) testes ALB concentration 
above that of others and control. Exposure of rats to 

TAL mono-treatment (followed by HAL-fed, MSG + 

TAL-fed and MSG + HAL-fed) decreased (p<0.05) 

testes ALB concentration compared to the control and 

MSG mono-treatment (Figure 5). 
 

 
Figure 3: Response of AL and MSG on CAT activity (IU/L) in rats’ testes homogenate. 
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Figure 4: Response of AL and MSG on MDA concentration (µmol/ml) in rats’ testes homogenate. 

 

 
Figure 5: Response of AL and MSG on ALB concentration (Mg/dl) in rats’ testes homogenate. 

 

Exposing rats to MSG mono-therapy increased 

(p<0.05) testes TP concentration in contrast to control 

and other treatments. Exposure of rats to MSG + HAL 

followed by MSG+TAL co-therapy decreased (p<0.05) 

testes TP concentration below that of the control and 

others (Figure 6). 

Exposing rats to MSG mono-therapy decreased 

(p<0.05) testes Zn concentration in contrast to control 

and other treatments. Exposure of rats to MSG + TAL 

co-therapy increased (p<0.05) testes Zn concentration 
above that of the MSG-mono-treatment and others, 

including the control (Figure 7). In Figure 8, rats that 

were exposed to MSG mono-therapy had an increased 

(p<0.05) testes Mg concentration above that of others 

and control. Exposure of rats to TAL mono-treatment 

(followed by HAL-fed) decreased (p<0.05) testes Mg 

concentration in comparison to other treated groups 

and the control while exposure of rats to MSG + HAL 

followed by MSG + TAL co-therapy decreased 

(p<0.05) testes Mg concentration compared to MSG-

treatment. Testes histomorphology of the rats was 

represented in Figure 9. Photomicrograph of the testes 

from rats in the control group (Slide A) showed normal 
seminiferous tubules with normal lamina propria (LP), 

spermatogonia (SC), spermatids (SP) and leydig cells 

(LC).  

 

 
Figure 6: Response of AL and MSG on TP concentration (g/dl) in rats’ testes homogenate. 

 

MSG mono-therapy (group D, slide D) caused a 

severely degenerated spermatids (white arrows) within 

seminiferous tubules in the rats’ testes. Photo-

micrograph of the testes from rats in group C (slide C) 

as compared to group D, showed mild degeneration of 

spermatids (dSp) in the seminiferous tubules while 
photomicrograph of testes from rats in group B (slide 

B), showed numerous immature spermatocytes (black 

arrows). Photomicrograph of the testes from rats in 

group E (slide E) showed multifocal degeneration and 

necrosis of spermatids (white arrows) within the 

seminiferous tubules while that from rats in group F 

(slide F) showed severely proliferated spermatocytes 

and immature spermatids (black arrows) in the 

seminiferous tubule. 

 

DISCUSSION 

 

This study evaluated the responses of AL on rats' testes 

histomorphology and antioxidant markers compro-
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mised by MSG as the testes are prone to adverse 

responses due to oxidative stress caused by extraneous 

chemical agents25. MSG mono-therapy caused an 

increase (p<0.05) in the rats’ testes homogenate GPX 

(Figure 1), SOD (Figure 2), CAT (Figure 3), MDA 
(Figure 4), ALB (Figure 5), TP (Figure 6), and Mg 

(Figure 7) levels but a decrease (p<0.05) in the rats’ 

testes homogenate Zn level (Figure 8) and degenerated 

spermatids within the seminiferous tubules (Figure 9) 

compared to control. These were in line with recent 

review report9. The study outcomes demonstrated that 

MSG caused a significant adverse outcome on the 
testes histology and testes homogenate markers of 

antioxidant metabolism in the rats.  

 

 
Figure 7: Response of AL and MSG on Zn concentration (Mg/dl) in rats’ testis homogenate. 

 

 
Figure 8: Response of AL and MSG on Mg concentration (Mg/dl) in rats’ testes homogenate. 

 

 

 
A (Control) 

 

 
B (TAL-fed) 

 

 
C (HAL-fed) 

 

 
D (MSG-fed) 

 

 
E (MSG + TAL-fed) 

 

 
F (MSG + HAL-fed) 

Figure 9: Photomicrograph of rats' brain and testes sections (Hematoxylin & Eosin) stained × 400). 
(MSG = 8000 mg Kg−1. TAL = 1.14:6.85 mg Kg−1 of A:L. HAL = 5.7:34.25 mg Kg−1 of A:L) 
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In accord with the present study, MSG mono-treatment 

altered testes histomorphology and bio-functional 

integrities in a previous study2. Consistent with this 

study, an increase in oxidative stress but a decrease in 

antioxidants as suggested from the results of this study 
were implicated with MSG outcomes in recent 

studies3,9. Other reports supported the present study 

that increased MDA concent-ration26,38, SOD activity39, 

ALB concentration40, TP concentration40,41, Mg 

concentration42 but decreased Zn concentration43 and 

degenerated  spermatids within the seminiferous 

tubules44,45 indicated oxidative stress and associated 

oxidative damage in the rats’ testes. Collaboratively, 

ALB, TP and Mg which are immunological markers 

usually involved in the reduction of oxidative stress40,42 

increased in this study following MSG mono-treatment 

(Figure 5, Figure 6, and Figure 8). These are pointers to 
apparent surge in immune response and heightened 

attempt to reduce oxidative stress and attendant 

oxidative damage in rats’ testes due to MSG 

assault40,42.  

Zinc protects cells against oxidative stress by inducing 

the synthesis of specialized protein (metallothionein) 

involved in reducing hydroxyl radicals and by acting as 

a co-factor to antioxidant enzymes metabolisms43. Zn 

concentration decreased as in this study in an apparent 

attempt to carry out the noted antioxidative roles in 

response to increased oxidative stress due to MSG 
mono-treatment. In contrast, however, several studies26, 

38,46,47 reported that decreased, instead of increased, 

activities of the determined enzymatic antioxidants 

(GPX, SOD and CAT) indicated oxidative stress and 

associated oxidative damage in animal models. As this 

is an acute study that lasted for seven days, it is 

probable that the activities of these antioxidant 

enzymes were merely increased as in this study in 

readiness to mop up the excessive concentration of 

oxidants produced following MSG assault. This is in 

concord with the submission herein on the outcome of 

MSG assault on ALB, TP and Mg concentrations in 
rats’ testes. It is plausible that, with adequate time 

duration, these enzymatic antioxidants would have 

decreased after mopping up the excess oxidants 

associated with increased oxidative stress due to MSG 

assault. In support of this hypothetical scenario, GPX 

which is known to reduce hydrogen peroxide to water 

thereby reducing its harmful oxidant effects47 may have 

been mobilized in readiness to combat the oxidant 

effect of hydrogen peroxide produced following MSG 

assault leading to the observed increase. Intriguingly, 

CAT activity in MSG + HAL-fed group increased 
(p<0.05) above that of MSG–fed rats (Figure 3). This 

may be underscoring an overriding adversity or up-

regulated dysfunction on CAT metabolism on rats’ 

testes due to MSG + HAL co-therapy compared to 

MSG monotherapy and other treatments which 

deserves follow-up studies. MSG can dissociate easily 

in ionic, including physiologic, media to give out, aside 

glutamic acid which is a harmless amino acid, a free 

sodium ion8. This study, therefore, speculates that the 

free sodium ion (Na+) may, by unknown mechanisms, 

act either as an opportunistic free radical or to initiate 
series of reactions leading to the production of a free 

radical. In either cases, activities of a free radical could 

lead to excess generation of other free radicals and 

oxidative stress in the rats’ testes suggested by the 

observations herein. The validation of this speculation 

which was not incorporated in the design of the present 
study is a significant limitation that deserves follow-up 

in subsequent studies aimed to evaluate the mechanistic 

roles of the dissociation components of MSG, notably 

the sodium ion moiety, in general MSG metabolism 

and toxicology. 

The responses following TAL and HAL mono-

treatments or co-treatments with MSG (Figure 1 to 

Figure 9) were inconsistent compared to control and 

MSG mono-therapies. These underscore the 

inconsistency in AL responses and in the apparent 

modulatory responses by AL against effects by MSG 

mono-therapy on the rats’ testes. AL either alone or 
combined with MSG probably mediated novel 

oxidative response beyond the modulatory capacity of 

the natural antioxidative defense mechanisms as 

highlighted in the outcome of this study on CAT 

activity in MSG + HAL- co-treated rats’ testes which 

evokes needs for further studies. Response to oxidative 

stress as a way to drug action was muted in earlier 

study, though, with some antihypertensives18. The 

underlying mechanisms for the pharmacologic actions 

of artemether component of AL include an increase in 

the production of free radicals and a reduction in blood 
antioxidants10. The capacity of lumefantrine to lasts for 

5 days in the circulation may provide required duration 

for it to establish toxic outcome on the oxidant-

antioxidant balance in the rats’ testes15,16. These could 

concert to predispose AL to mediate oxidative 

responses leading to inconsistent outcomes recorded 

herein. In particular, the inconsistent responses 

following TAL and HAL mono-treatments or co-

treatments with MSG on rats’ testes histology 

compared to control and MSG mono-treatment (Figure 

9) reflected and collaborated the testes homogenate 

chemistry results demonstrating varied adverse 
responses on the rats’ testes in the other treatment 

groups.  

Adverse effects due to oxidative stress manifest easily 

on the testes because testes have low vascularity and 

oxygen content25,26. MSG mono-therapy compromised 

the testes histology, antioxidants metabolism and 

reproductive integrity in a recent study44. Inconsistent 

results as obtained herein, therefore, predict 

unpredictability in possible outcomes from co-

consumption of AL and MSG. Caution needs to be 

exercised in the concomitant treatment of AL and MSG 
in rats’ especially against dysfunctions in rats’ testes 

histology and antioxidant metabolism pending further 

clarification studies. The speculations or hypotheses 

and other perspectives highlighted in the discussion, 

however, need to be collaborated in further studies 

using similar but longer-duration study designs. 

Limitations of the study 

The study was based on a sample size of five rats and 

did not assess testicular function bio-indicators in the 

rats’ testes homogenate or in the serum. This study did 

not explore the possible contributions from the 
dissociation components of MSG notably sodium ion 
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moiety on the rats’ testes histology and antioxidant 

markers. Malaria disease model group was not 

included in this study to compare the study outcomes 

with a malaria disease model. The acute study design 

may not have allowed for a complete induction and 
evaluation of the determined responses. These concert 

to limit this study and warrant detailed address in 

subsequent studies. 

 

CONCLUSIONS 

 

Thus, AL caused inconsistent modulation of alterations 

in rats’ testes histology and antioxidant function 

markers due to MSG assault. The modulation may not 

be sustainable and the alterations may instead be 

spiked warranting caution in co-feeding AL and MSG 

to rats notably as an intervention against dysfunctions 
in rats’ testes histology and antioxidant metabolism 

pending further clarification studies. 
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