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Abstract 
____________________________________________________________________________________________________ 
 
Epidermal growth factor (EGF) which originally isolated from mouse submaxillary 

gland had its key role in the proliferation, differentiation, and survival of neural 

and glial precursor cells. The physiological effects of EGF are through an EGF 

receptor (EGFR) with tyrosine kinase activity. The traditionally accepted view is 

that normal EGFR is no tumorigenic, whereas mutated EGFR such as an oncogenic 

receptor EGFRvIII is oncogenic. Recently, EGF was found to be beneficial for 

wound healing, burn and diabetic foot ulcer, and show an attractive perspective in 

future. Moreover, cosmetic containing EGF play the control role of the amount of 

erythema and sebum in the skin, anti-aging and whitening, and improving the 

plasticity of skin. Based on these data, our team has successfully prepared a series 

of 350 bottles of Shampoo liquid containing EGF and 26 bottles of recombinant 

human EGF spray, and 4 bottles of EGF-Silvadence ointment. The initial results 

showed that prepared rhEGF is safe and available in clinical use. On the other 

hand, progress on the interaction of EGF coupled with its altered oncogenic 

receptor signaling via its downstream molecules such as Ras/Raf/MAPK and/or 

PI3k/akt in growth and progression of some cancers such as brain glioblastoma, 

lung cancers, breast, pancreas and A431 human epidermoid carcinoma cells. In 

addition to a series of target drugs gefitinib, erlotinib, osimertinib and the 

CIMAvax-EGF vaccine, an antioncogenic receptor antibody based fusion protein 

[e.g. Cetuximab-based IL-10 fusion protein, CmAb-(IL10)2] could improve cancer 

immunotherapy. 

Keywords: EGF, EGFR, oncogenic receptor EGFR VIII, Target therapy. 

 

 

INTRODUCTION 

 

The biological activity of EGF and its normal EGF 

receptor (EGFR) 

In earlier 1989-91, the discovery of oncogenic receptor 

and its earliest described Ras/Raf/MAPK pathway in 

cell signaling in concise figure from George Zhu’s 

research work that oncogenic pml/RARa fusion in a 

specific APL and androgen/androgen receptor 

oncogenic signaling in hormonal tumorigenesis, this is 

a new area and its novel etiology of hormonally driven 

cancers even growth factors involved in this event 

(process)1-5. In the pharmacology textbook, the most 

notably, Dopamine which was synthesized in 1910, an 

old clinical drug, was mediated through its D2 

dopamine receptor (DRD2) in inducing role of 

VEGFR2/KDR/FIk-1 endocytosis and angiogenesis. 

ONC201 is the first clinical bitopic antagonist of 

classical DRD2, an oncogenic receptor in brain and 

neuroendocrine tumors6. DRD2 activation has been 

found to promote self-renewal in breast cancer cells by 

activating STAT3 and IL-67. Here, DRD2 is not an 

oncogene, and it represents the mechanism of 

dopamine drug action. Now many studies in this field 

are dedicated on their clinical targeting therapy. There 

are presently thousands of publications and over 200 ~ 

400 global journals which are focused on this area 

targeting oncogenic receptor or oncogenic receptor 

(tyrosine) kinase in tumours. p38 MAPK family are 

found many subtypes, which are included p38α 
(MAPK14), p38β (MAPK11), p38γ (MAPK12), and 

p38δ (MAPK13). The traditionally accepted view is 

that normal epidermal growth factor receptor (EGFR) 

is no tumorigenic8, this is importance in distinguishing 

normal epidermal growth factor receptor from 

oncogenic receptor EGFR. Epidermal growth factor 

(EGF) contains 53 amino acids residues with intra-

molecular disulfide bonds that are required for its 

biological activity. 

 

http://www.ujpr.org/
http://www.ujpronline.com/
https://crossmark.crossref.org/dialog/?doi=10.22270/ujpr.v9i1.1062&amp;domain=pdf
https://orcid.org/0000-0001-6617-5135
http://doi.org/10.22270/ujpr.v9i1.1062
mailto:sansan4240732@163.com


Zhu                                                                                Universal Journal of Pharmaceutical Research 2024; 9(1):62-74                                                   
   

ISSN: 2456-8058                                                                   63                                                 CODEN (USA): UJPRA3    

Table 1: The Comparative data of wound healing rate at 2-10 µg doses of rhEGF spray (Days) (healing per 

cent). 
Group Exp. 

No. 

Days 

 1 2 3 4 5 6 7 8 9 10 11 13 15 

Control 3 23.8 33.9 39.6 42.8 52.1 

n=2 

53.2 

n=2 

56.4 62.6 67.2 72.4 84.9 

n=1 

90.4 94.4 

2 µg 1 44.0 55.0 61.9 65.3   68.0 78.8  90.7  96.0 98.4 

5 µg 1 43.8

n=2 
52.3 59.7 63.3 63.3 66.7 70.0 76.0 77.8 84.0 92.0 96.0 97.0 

10 µg 3 39.3 57.5* 64.9 69.7** 73.4 

n=2 

74.1 

n=2 

75.0*** 83.5 84.5 89.5* 92.3 

n=1 
96.0△ 97.6 

50 µg 1 39.3 43.7 48.0 56.0   67.0 77.5  86.7  95.0 97.3 

100 µg 2 45.4 55.7 61.9 66.1 69.4 72.3 75.9 79.6 84.4 86.0 91.1 94.7 96.7 
Note: *A t-test represents significant difference between means of 10 µg rhEGF group and the control. 

*p<0.02, **p＜0.002***p<0.05, △p>0.1. Source: From Zhu G, et al. Universal Journal of Pharmaceutical Research. 2020;5(1): 12-2011. 

 

Such as stimulating or inhibiting proliferation, 

differentiation and angiogenesis in various of cells, e.g. 

fibroblasts, keratocytes, myofibroblasts, epidermal 

cells, corneal epithelial cells9-11. EGF also play a role in 

every tissue in the body during development and in the 

adult, the exact nature of this role is not clear. EGF 

interacts with its specific EGF receptor which located 

at the cell surface12.  

The cell surface EGFR, i.e.,170,000 dalton, tyrosine 

kinase transmembrane receptor along with a member of 

the human EGFR (HER) family which constitutes four 

transmembrane receptors that interact with each other, 

i.e., EGFR/HER1, HER2/neu, HER3, and HER4. 

EGFR consist of a 621- amino acids extracelluar EGF 

binding, a single transmembrane region of 23 amino 

acids and a 542-amino acids cytoplasmic domain13. In 

epidermal keratinocytes, the binding numbers of 

normal EGFR was 1.5x105 binding sites/cell14. EGF 

bind to EGFR complex induced EGFR autophosphory-

lation and the activation of two of the major EGFR 

downstream- signaling transduction pathways, 

extracellular signal-regulated kinase (Ras/Raf/ MAPK 

(MEK)/ERK)5,15-31 (Figure 1) and phospho-lipase 

C(PLC)-r, which regulate transcription factors leading 

to proliferation of skin and other epithelial tissue. 

EGFR regulates important process including cell 

survival, cell cycle progression, tumor development, 

invasion and angiogenesis, and metastasis etc. 

biological action. 

 

 
Figure 1: A Scheme of oncogenic receptor (or receptor) mediated multiple signal transductions. 

(Here, nuclear regulators include transcriptional factors such as Jun/AP-1: Fos, NF-KB, myc, p53 and RB so on)[Data from George Zhu4,5, 1991; 
Science, 2002 (unpublished data) 
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Table 2: Major clinical trials (completed and/or are ongoing) and their main efficacy results with each drug 

category. 
Target Agent (Phase of trial) Results Reference 

EGFR Gefitinib (II) Rec GBM;PFS-6; 13-14.3%, 

Mos; 24.6-39.4 weeks 

16, 17 

 Erlotinib + TMZ (I) Rec GBM; mOS: 55 weeks 19, 20 

 Cetuximab (II) Ongoing - 

PDGFR Imatinib±hydr/rea (II) Rec GBM; PF-6; 3%, mPFS: 

14.4 weeks, mOS: 48.9 weeks. 

Rec AAs; PF-6: 10% 

25, 26 

VEGFR Bevacizumab+IRI (II) Rec GBM; RR: 63% PF-6: 38-

46%, PR: 57% 

29, 30 

 Vatalanib (I/II) Rec GBM; PR: 4%, stable 

disease: 56% 

32 

mTOR Temsirolimus (II) Rec GBM; PF6-6: 7.8%, mOS: 

44 months 

37 

 Terms. + erlotinib (I/II) Ongoing; PF-6: 33% - 

Ras Tipifarnib (II) Rec GBM; PF6-6: 33% 40 

 Tipifarnib + TMZ (I) Rec GBM; PF6-6: 12% 41 

PKC-b Enzastaurin vs lomustine 

(III) 

Terminated because of equal 

efficacy results  

45 

RAF Sorafenib (I/II) Ongoing - 

EGFR/HER-2 Lapatinib (II) Ongoing - 

HER-1/EGFR 125I-MAb 425 (I/II) Rec GBM/AAs; OS range: 4-

150/4-270 months 

47 

Tenascin-C 131I-81C6 (II) Rec GBM; mOS: 78 weeks 49 

Integrins Cilengitide (I/II) Rec MGs; CR: 4%, PR: 6%, 

stable disease: 8% 

55 

 Cilengitide + RT (II) Ongoing - 
oEGFR, epidermal growth factor receptor; PDGFR, platelet-derived growth factor receptor; VEGFR, vascular endothelial growth factor receptor; 

Mtor. Mammalian target of rapamycin; Her, human epidermal growth factor receptor; TMZ, temozolamide; hydr/rea, hydroxyurea; IRI, irinotecan; 
Tems, temsirolimus; RT, radiation; Rec; GBM, Glioblastoma muliforme; AAs, anaplastic astrocytomas; MGs, malignant gliomas; PFS-6, 6-month 

progression-free survival; mPFS,  median progression-free survival; mOS, median overall survival; RR, response rate; PR, partial response; C, 

complete response. Data from Argyriou AA and Kalofonos HP. Mol Med, 2009,15:115-12264 
 

EGF accelerate wound healing 

Advances in the knowledge of pathway, it has been 

suggested that EGF could be beneficial for burn, 

wound healing, diabetic foot ulcer, and provide an 

attractive perspective11,32-35. In mice wound 

experiments (Table 1)11, it has been observed that a 

dose-dependent stimulatory effect of EGF on wound 

healing was consistent with increased hEGF 

concentration. Treatment with rhEGF significantly 

decreased the length of time to over 59% healing by 

approximately 4-5 days, and that to 90% healing by 3 

days, respectively. The initial results showed that 

prepared rhEGF may assist in clinical wound healing 

time, and is safe and available. Moreover, cosmetic 

containing EGF could be effective to show whitening, 

to remove wrinkle, and anti-aging, and control of 

erythem amount and sebum amount on the human skin 

care. In this regard, George Zhu and Zhi QW have 

successfully prepared a series of 350 bottles of Shampo 

liquid (New Washing) and 26 bottles of recombinant 

human EGF spray, and 4 bottles of EGF-Silvadence 

ointment into market11. The responder rate with perfect 

satisfied and satisfied was over 95 per cent. For 

instance the detail investigation as to me, aged 60 

years. In my own hair for many years, after using Lux 

soap, there was the phenomenon of dry hair on the 

forehead. A small white patch on the head. When 

changing to this Shampoo, no more dry and dandruff 

on the forehead was seen. This fact indicates that the 

head skin showed satisfied effects of moisture 

retention. The author in this paper has used this hair 

shampoo for 5 years. The second case, aged 73 years, 

the wound did not heal for over a year after minor 

surgery. He wipes the wound of flowing water with 

tissue every day. After using EGF-Silvadence 

ointment, surprisingly, there was no fluid flowing out 

of the wound for 24 hrs. Later, the wound was relapsed 

once again. After using Shampoo containing EGF for 2 

years, the recurred wound achieved cure once again. 

The results implicate EGF in the possible role of 

wound healing. Another a 42- year-old police officer 

here has multiple black naevus cutaneus on his right 

face. After a period of 2 years of Shampoo, the black 

naevus had obviously fade and/or even disappearance 

of 2 tiny naevus around right eye, indicating the role of 

rhEGF in whitening on the human skin care. Now, 

epidermal growth factor (EGF) was included as an 

additive ingredient in cosmetics, including hair 

Shampoo. Actually, EGF is the secreted protein by skin 

epithelial cells in epidermis. The detail preparation of 

rhEGF agents has been described in other elsewhere11. 

Oncogenic receptor EGFRvIII in malignant cells 

and its targeting immunotherapy 

On the other hand, malignant cells share oncogenic 

receptors11,36-58. The most common primary brain 

tumors are malignant gliomas including glioblastomas 

(GBM) and anaplastic astrocytomas. Aggressive 

human glioma often express a truncated and oncogenic 

form of the epidermal growth factor receptor, known as 

oncogenic receptor EGFRvIII5,11,36-40,42-58.  

http://www.ujpr.org/
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Table 3: Baseline characteristics of patients to objective detail response to EGFR- TKIs treatment in different 

practical trials. 
EGFR-TKIs No of 

patients 

Targets of EGFR (No) Outcome (No, %) Median PFS 

(months)* 

Median 

OS (months)** 

References 

Gefitinib 

250 mg/day 

9 Ex19del(4), L858R(2), 

L861Q(1), G719C(1) 

PR:5, MaR:3, MiR:1  12.9, 17.9, 18.8, 

>4.3,>7.8>14.0, 
>14.7, >21.4, 

>33.3 

Lynch97 

 26  CR1(3.8%), PR11(42.3%), 
SD9(34.6%), ORR:46.2% 

8.2 10.4 
OS-12:31.6% 

Zheng103 

597  ORR:43.0% 5.7 

PFS-12:24.9% 

18.6 Mok104 

114 Ex19del(58), L858R(49) CR5(44%), PR79(69.3%), 
SD18(15.8%), ORR:73.7% 

10.8 30.5 Maemondo105 

86  ORR:62.1% 9.2  Mitsudomi106 

159 Ex19del(93), 

L858R(65), 
L858R+Ex19del(1) 

CR1(1%), PR88(55%), 

ORR:56% 

11.0 10.9 Park107 

45 Ex19del(19), 

L858R(26) 

CR1(2.2%), PR27(60%), 

SD15(33.3%), ORR:62.3% 

11.5 

19del:13.2, 

L858:9.8 

21.7 

19del:27.6 

L858:20.4 

Xue108 

44 Ex19del(27); 

L858R(12); 

Exon18(5:G719A:1,G71
9C:2,E709A+G719S:1) 

Del19(26:A1, E19,G3):CR1, 

PR21, SD1;L858R(12:A1, 

E7):PR8;Exon18(5:A1, E4):PR4, 
SD1 

16.9 EGFR(+):39.6 

EGFR(-):19.4 

E709A+G719S:9
9.2 

Faehling90 

55 Ex19del(30), L858R(25) PR42(76.4%),ORR:76.4% 13.8 OS-12:94.2% 

OS-18:83.7% 

Ohe109 

277 
(G;183, 

E:94) 

Ex19del, L858R   31.8(26.6-36.0) 
OS-12:83% 

OS-24:59% 

OS-36:44% 

Ramalingam110 

Erlotinib 

150 mg/day 

427 Ex19del, L858R ORR: 38(8.9%) 2.2 6.7 Shepherd111 

82   13.1  Zhou112 

86   9.7  Rosell113 

   9.3-13.1 19.3-31.8 Ramalingam110

Fu114 

Icotinib 

125 mg, 3 

times/day 

199 Ex19del, L858R  4.6-11.2 30.5 Shi115 

Fu114 

Afatinib 

40 mg/day 

242 (Lux-

lung6 

Ex19del, L858R  11.0  Wu116 

 345 (Lux -
lng 3) 

364 (Lux-

lung 6) 

   33.3(del19) 
 

31.4(del19) 

Yang117 

160 Ex19del(93) 
L858R(67) 

CR1(1%), PR111(69%), 
SD34(21%), ORR:70% 

11.0 
Del19:12.7 

L858:10.9 

 Park107 

230 Ex19del(113), 
L858R(91) 

 11.1(n=230); 
13.6(n=204) 

 Sequist118 

   11.0-13.6 30.7-31.3*** 

19.6-27.6*** 

Fu114 

Osimertinib 

80 mg/day 

279 
144(CNS 

lesions) 

Ex19del(191), L858R 
(83), T790M(275) 

ORR:71% 10.1 
 

8.5 

 Mok119 

 30 
(80 mg) 

30 

(160 mg) 

Ex19del(11), L858R(15) 
Ex19del(15), L858R(14) 

PR20(67%), SD8(27%), 
ORR:67% 

CR2(7%), PR24(80%), 

SD4(13%), ORR:87% 

22.1 
 

19.3 

OS-12:72%(n,60) 
OS-18:56%(n,60) 

Ramalingam93 

279 Ex19del, L858R   38.6 Ramalingam110 

65 Ex19del(33), L858R(32) CR2(3.1%), PR47(72.3%), 

ORR:75.4% 

19.1 OS-12:96.8% 

OS-18:90.1% 

Ohe109 

203(>75yr); 
335(<75yr) 

  16.9 
22.1 

 Sakata120 

Note: No: Number; G: gefitinib; E: erlotinib; A: afatinib; Yr: year; EGFR-TKIs: human epidermal growth factor receptor tyrosine kinase 

inhibitors; MaR: major response; MiR: minor response; CR: complete response or complete remission; PR: Partial response; SD: stable disease; 

ORR: objective or overall response rate; * Median PFS: median progression-free survival, median PFS in chemotherapy:4.2-6.9 months;  
**Median OS: median overall survival; PFS-12: PFS at 12 months; OS-12,OS-18, OS-24,OS-36: Os at 12 moths, at 18 months,at 24 moths, at 36 

months; *** The upper data was derived from patients with Ex19del and the lower data from patients with L858R; LUX-lung3:pemetrexed- 

cisplatin; LUX-lung6: gemcitabine- cisplatin. 

 

EGFRvIII is the deletion of cDNA nucleotids 275-1075 

(exons 2-7) within the extracellular domain of the 

EGFR, which encode amino acids 6-276 in the EGFR 

protein. This deletion of 801 bp in the EGFR results in 

an in-frame trunction of the normal EGFR protein, a 

145-kda receptor8. This EGFRvIII occurs in up to 30% 

of high-grade gliomas especially glioblastoma 

multiforme  (GBM). Amplification and high expression 

http://www.ujpr.org/
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(as high as 6- to 60-fold) of EGFR in GBM may drive 

tumor growth and proliferation to a significant 

degree59. In the 2021 WHO classification of central 

nervous system tumors, EGFR amplification, but not 

EGFRvIII expression, is a diagnostic criterion for 

GBM, IDH- wild type, when histopathological criteria 

do not allow for definitive diagnosis. The oncogenic 

receptor EGFRvIII and platelet derived growth factor 

receptor (PDGFR) induced Src-mediated tyrosine 

phosphorylation of DOCK1 (dedicator of cytokinesis) 

to activate Rac1 and promote cell migration and 

invasion, suggesting a potential targeted therapeutic 

window. Recent genetic studies in medulloblastoma 

(MB) metastasis also revealed that G protein-coupled 

receptor kinases (GRKs) can regulate EGFR and 

PDGFR activity at the mRNA and protein level by 

altered oncogenic receptor signaling, and involved in 

cancer metastasis through their regulation of G-protein 

coupled receptors (GPCRs) in growth factor (GF)-

mediated cell migration60.  

The prognosis for malignant gliomas remains poor. 

Begin in 2004, concomitant temozolomide (TMZ) with 

fractionated brain irradiation (gamma knife 

radiosurgery, or whole brain radiotherapy WBRT) 

were known the standard of care at most 

neurooncology centres in Europe and the USA61. In 

2010, McGirt62 treated with combined modalities 

Carmustine (Gliadel) plus concomitant TMZ in 37 

GBM patients, and the median survival (OS) was 20.7 

months, with a 36% of 2-year survival rate. Targeted 

toxins (immunotoxins) represent a new class of 

anticancer agents with high specificity for tumor cells 

selectively overexpressing surface proteins such as 

EGFR63. At present, various single agent targeted 

therapies, such as EGFR inhibitor gefitinib and 

imatinib have failed to successfully improve survival 

benefits. In recurrent GBM with gefitinib treatment, the 

6 months progression-free survival (PFS-6) was 13-

14.3% and a median overall survival (OS) time from 

initial treatment was 24.6-39.4 weeks. Erlotinib 

treatment was equally as effective as the standard 

regimen (median OS 58 weeks, median PFS 6.9 

months, 11.3% CR (n=7) and 27.4% (n=17) partial 

response (Table 2)61,64. In the EORT randomized phase 

II trial, 54 recurrent GBM treated with erlotinib and 56 

with TMZ or BCNU (bis-chloethylnitrosourea), 

showing that PFS at 6 months was 12% for erlotinib 

and 24% for the control, and a similar OS in both 

arm65. In overall, the median OS in gliomas varies in 

different trials, but is generally to be 18-20 months for 

anaplastic astrocytomas and 8-14 months for GBM 63. 

Otherwise, Vredenburgh et al.,66 conducted a phase II 

trial of bevacizumab (10 mg/kg) and irinotecan in 23 

patients with recurrent grade III-IV glioma. The 

median PFS was 23 weeks for all patients. The PFS-6 

and the 6-month OS were 38% and 72%, respectively. 

The drug action is through binding to VEGFR-2. The 

combination of anti-human VEGF bevacizumab and 

irinotecan is therefore an active regimen and benefits 

for recurrent III-IV glioma. 

Many studies were in recent focused on brain and 

leptomeningeal metastases in patients with non- small 

cell lung cancer (NSCLC), and breast cancer brain 

metastases (BCBM). The leptomeningeal metastases 

(LM) from lung cancer account for 5-29% of LM from 

solid tumors. The patients with LM from lung cancer 

had a median survival of only 1-1.8 months without 

treatment67 and 2 to 5 months with whole brain 

radiation therapy68, and median survivals of 4 to 6.5 

months with chemotherapy69. In clinical trials, when 

compared with chemotherapy, the first-line treatment 

with reversible EGFR-TKIs, such as gefitinib or 

erlotinib may improve progression-free survival (PFS).  

Gefitinib or erlotinib for NSCLC harboring EGFR 

mutation had unexpected activity against brain and 

leptomeningeal metastases. The ability of high dose 

(500-1250 mg/day) gefitinib or erlotinib to cross the 

blood brain barrier render their use of multiple 

intracranial lesions, which was in particular reported. 

The median PFS and median OS on first-line EGFR- 

TKIs were 19.0-12.68 months and 27.69-28.0 months, 

respectively. In a cohort of 23 patients with lung 

adenocarcinoma and asymptomatic brain metastasis70, 

treatment concluded oral gefitinib 250 mg or erlotinib 

150 mg once daily. 65.2% (13/23) of available patients 

obtained partial response (PR), 13% (3/23) had stable 

disease (SD), and a disease control rate of 79.3%. 

Median PFS and OS were 6.4 months and 18.6 months, 

respectively. First-line afatinib is also effective in 

NSCLC with CNS metastases. Total 42% (13/31) of 

the evaluable patients experienced a PR on afatinib, 

39% (12/31) had SD. The overall rate of cerebral 

response to treatment with afatinib was 35%. The 

overall survival (OS) was 9.8 months71.  

Among those isolated case reports, there were at least 

more 20 cases to bring about our clinical practice 

efficacy. Sakai et al.,72 presented a 40-year-old Japanse 

case of carcinomatous meningitis from NSCLC. The 

patient obtained an over 4 months of complete 

response after the initiation of a dose of 250mg/day 

gefitinib, and was able to work. Jackman et al.,73 

presented a 53-year-old white man with stage IV 

adenocarcinoma (2 cm tumor) of the lung harboring an 

exon 19 deletion (2239-2247del TTAAGAGAA) of the 

EGFR. The patient achieved a partial response to 

treatment with carboplatin, paclitaxel and 250 mg/day 

gefitinib. After September 2004, because of his 

adenocarcinoma cells in the CSF, gefitinib dose was 

escalated from 500 mg/day to 750 mg/day and then to 

1000 mg/day over a period of 10 weeks. At the highest 

gefitinib CSF concentration (42 nmol/l), the cytologic 

CSF showed no evidence of malignant cells. As the 

marked improvement of his carcinomatous meningitis 

and related symptoms, he was able to return to work. 

He obtained a near one year of overall survival at 

initiation of EGFR-TKI therapy. Muller74 presented a 

six weeks of CR in a 43-year-old German woman with 

NSCLC with cerebral metastases following initiation 

of a dose of 250mg/day gefitinib. Hata et al.,75 reported 

a 56-year-old woman with metastatic NSCLC 

harboring an EGFR mutation (exon 18 G719N) on 

analysis of the malignant effusion. Gefitinib was then 

given following chest tube drainage, and a partial 

response was achieved for approximately 1 year. After 

disease progression on gefitinib, she carried out WBRT 

due to her brain lesions, subsequently, changed to 

http://www.ujpr.org/
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erlotinib in 2009, and with a disease stable for 4 

months. Moreover, a high dose of 300 mg/day erlotinib 

was given due to her deteriorated brain lesions.  

Two weeks later, both her clinical symptoms and 

findings of MRI imaging improved, and in further 

remained stable for 6 months. Yuan reported a 52- 

year- old Chinese man with stage IIIA lung 

adenocarcinoma harboring an exon 19 deletion (L747- 

S752del5) and a point mutation (K754I) in exon19 of 

EGFR who developed multiple brain metastases one 

year after operation76. After an oral 250 mg/day 

gefitinib with concomitant WBRT as first-line therapy, 

the patient achieved a 50 months of PFS. Subsequently, 

a dosage of 500 mg/day gefitinib combined with 

pemetrexed were used as the second-line treatment due 

to new brain lesions and leptomeningeal metastases. 

The patient obtained a total overall survival of 59 

months. 

Another attention was focused on the efficacy of 

erlotinib for the treatment of brain and leptomeningeal 

metastases instead of high dose gefitinib failure. 

Katayama et al.,77 used erlotinib administration in 

treatment of 7 lung adenocarcinoma with EGFR 

mutation who had shown an initial good response to 

gefitinib (2CR, 2PR, 2SD; initial PFS 310 days, range: 

113-1211 days). 3 patients obtained PR, 3 had SD. The 

overall survival (OS) from the initiation of erlotinib 

ranged from 15 to 530 days.  

The Spanish Lung Cancer Group78 monitored a group 

of chemotherapy- naive, EGFR-mutated NSCLC 

patients with intracranial lesions who were treated with 

erlotinib: 4 CR and 3 PR were reported. Lai and 

Boshoff79 presented a 55-year-old case of recurrent 

NSCLC harboring EGFR L858R mutation had 

complete remission in brain disease after using 150 

mg/day erlotinib. Fekrazad et al.,80 reported a 60-year-

old case of a non-smoking native American woman 

who had a complete resolution of brain metastases 

from a lung adenoarcinoma after 8 months of using 

oral 150 mg/day erlotinib. Clarke et al.,81 also 

successfully controlled LM from a 54-year- old woman 

with stage IV lung adenocarcinoma harboring EGFR 

mutation using intermittent high dose erlotinib (1000-

1500 mg/week), with concurrent high CSF 

concentration. She survived 14 months following the 

diagnosis of CNS disease. Bendetti (2009)82 reported in 

Italy that 2 cases of NSCLC harboring EGFRexon19 

deletion mutation had complete response following a 

dose of 150 mg/day erlotinib. A 44-year-old case of 

multiple intracranial metastases (MIMs) from lung 

adenocarcinoma with L747-P753 deletion of EGFR 

exon19. He had complete remission of MIMs after 8 

months of 150 mg/day erlotinib treatment. Another a 

48-year-old woman with lung cancer had the 

disappearance of MIMs completely after 4 months of 

150 mg/day erlotinib. Molecular analysis of a lung 

neoplasm found an EGFRexon19 deletion (K745- 

E749del). The disease remained stable after 24 months 

of erlotinib treatment. These case reports are 

encouraging. 

EGFR mutation is an oncogenic driver in advanced 

lung cancer that is clinically responsive to EGFR-

TKIs 

The major of lung cancer is diagnosed at an advanced 

stage with 5-year survival with conventional 

chemotherapy regimens of about 5%. A rising 

incidence of NSCLC subtype harbors a particular 

activating EGFR mutation. EGFR mutation (Exon19 

deletion, Leu858Arg, Exon20 insertion, EGFR-KDD, 

EGFR–RAD51 fusion) act as an oncogenic driver of 

NSCLC in non-smokers and light-smokers83-96. 

Targeting for EGFR specific tyrosine kinase inhibitor 

(EGFR-TKI) therapy was considered, since targeted 

therapies results in superior outcomes compared with 

chemotherapy. 

To date, four major mutation of EGFR in human lung 

adenocarcinoma has been described97: substitutions for 

L858 in exon 21 and for G719 in exon 18, in-frame 

deletions within exon 19, and in-frame insertions 

within exon 20. In the area of advanced NSCLCs target 

therapy, two pivotal studies in earlier 200497 showed 

that in lung cancer activating EGFR mutations strongly 

correlates with its clinical response to gefitinib. Since 

then, three generations EGFR-TKIs entered as the first 

line treatment in NSCLC patients with mutated EGFR. 

Gefitinib (Iressa), the first EGFR-TK inhibitor 

(gefitinib in 2002, erlotinib in 2003) was through 

competitively binding to the ATP binding site at EGFR 

intracellular domain, which inhibits the 

phosphorylation of EGFR tyrosine kinase, and blocks 

downstream signaling and EGF-dependent prolife-

ration. Gefitinib and erlotinib have a higher binding 

affinity for EGFR exon 19 deletion and exon 21 

substitution mutations than for wild-type EGFR.  

Drugs half-life of gefitinib was 48 hours and erlotinib 

36.0 hours respectively. Erlotinib is about 60% 

absorbed after oral administration and its 

bioavailability is significantly increased by food to 

almost 100%. Second generation EGFR TKI, afatinib 

is an orally available, irreversible HER family blocker. 

As a third generation EGFR TKI, Osimertinib binds to 

certain mutant forms of EGFR (T790M, L858R and 

exon 19 deletion) that predominate in NSCLC tumours 

who have progressed on or after first-line EGFR-TKI 

therapy98,99. Osimertinib is about 200-fold more potent 

against the T790M mutation than its wild-type 

counterpart, which irreversibly binds to the cysteine in 

a covalent manner at C797 in EGFR kinase domain. 

Therefore, approximately 10% of patients with NSCLC 

harboring activating EGFR mutation are beneficial to 

dramatic response to EGFR-TKIs.                                                                                                                             

Emerging clinical trials in the comparison of three 

generation EGFR-TKIs clearly showed that there were 

significantly longer median progression free survival 

(PFS) and median overall survival (OS) in EGFR-TKIs 

compared with standard chemotherapy. Notably, 

Osimertinib was indicated in NSCLC patients with 

CNS metastases. In these personalized management for 

an individual with lung cancer, Balk et al.,100 in 2015 

presented a case of metastatic lung cancer harboring 

TKD-EGFR mutation who had a greater than 10 years 

response to EGFR-TKI therapy (gefitinib in 2003 to 

2009, and then erlotinib in late 2009 until late 2014). 

The patient with overall survival (OS) was 

approximately 20 years later. At the same year, Gallant 

et al.,86  also identified a 33-yer-old metastatic lung 
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adenocarcinoma harboring oncogenic EGFR kinase 

domain duplication (EGFR- KDD) that is clinically 

responsive to afatinib (-50% tumor shrinkage) for 7 

cycles of therapy. Hirokawa et al.,87 also presented a 

45-year-old Japanese woman with NSCLC positive for 

EGFR- KDD who developed carcinomatous meningitis 

and showed a marked response to erlotinib and 

osimertinib.  

She achieved a complete response of CNS metastases, 

and Osimertinib was effective for 14.5 months. Her 

overall survival was 44 months from the start of the 

carboplatin-pemetrexed chemotherapy and first-line 

EGFR-TKI therapy. Konduri and colleagues88 reported 

five patients with metastatic lung cancer whose tumors 

harbored EGFR fusion, most commonly RAD5, are 

recurrent in lung cancer. Four of whom were treated 

with EGFR-TKI erlotinib with documented antitumor 

response for 5, 6, 8, and 20 months respectively. More 

data, Zochbauer-Muller and Mullauer et al.,89 

described a patient with NSCLC, a multiple 

adenocarcinoma harboring an EGFR exon 20 insertion 

mutation who achieved durable stable disease with 

afatinib (initial 40 mg/day in July 2015, and then dose 

reductions to 20 mg/day) and remains on treatment 

after 4.5 years. Faehling et al.,90 reported a longest 

survivor (99.2 months) who was a male patient with 

stage IV disease at diagnosis and a complex EGFR 

exon 18 mutation (E709A and G719S). In our 2 

patients with advanced lung cancers, we used oral 

gefitinib (250 mg/day) in keeping stable disease for 8+ 

months in a 64-year-old female patient with multiple 

metastatic adenocarcinoma of the lung, and the overall 

survival (OS) was over 18 months101. Moreover, in my 

follow up, a 72-year-old woman with advanced lung 

cancer (a half the size of an egg).  

After using oral gefitinib in other hospital, she 

achieved a 4 years survivor. In a cohort of 114 

advanced T790M positive NSCLC with brain 

metastases, progression free survival in the osimertinib 

group was 8.5 months, compared to the platinum-based 

therapy group at 4.2 months102. Therefore, three 

generations EGFR-TKIs can be used as first-line 

therapy and/or second or third line therapy for stage 

IIIB/IV NSCLC with oncogenic EGFR mutation that 

are not suitable for chemotherapy. It is noteworthy that 

despite higher tumor response rates with first line 

EGFR- TKIs, disease progresses in a majority of lung 

cancer after 9 to 13 months of treatment. Acquired 

resistance to all three generation EGFR-TKIs, 

especially osimertinib resistance raise new challenges 

to the long-term effective strategies of those NSCLC 

patients. Table 3 showed the characteristics of patients 

to objective detail response to EGFR- TKIs treatment 

in different practical trials.      

In Cuba, the CIMAvax-EGF vaccine trial is another 

promising strategy for stage IIIB or IV NSCLC with 

one line of chemotherapy previously. In phase II 

clinical trial121, patients received at least four doses of 

CIMAvax-EGF had a significant effects on survival 

time. The mean survival was 19.47 months in 20 

patients with good antibody responders (GAR),4.97 

months in PARs (poor antibody responders) (n=18), 

and 8.52 months in 37 controls. More data, anti-EGF 

antibody titers in a phase III trial in 112 patients with 

advanced III/IV NSCLC122 was evaluated (89 GAR and 

24 patients with super-good responders)122. Mean 

survival time (MST) was 10.83 months in the vaccine 

arm versus 8.86 months in the controls. Using at least 

one dose of CIMAvax EGF vaccine123, the median 

overall survival (mOS) was 7.0 months, and mOS 9.98 

months in a total of 927 patients with at least 4 doses of 

CIMAvaxEGF compared with only 3.97 months in 

chemotherapy. Total 44.4% and 23.3% of the patients 

who completed the induction phase of treatment was 

still alive at 1 and 2 years, respectively. Two patients 

with GAR criterion had significant benefits with the 

longest 7 and 8 years survivor. In recent, a 75-year-old 

chinese woman with stage IV NSCLC harboring EGFR 

mutation had 6 years long survivor. The vaccine could 

induce antibodies against self EGFs that block EGF-

EGFR interaction. Thus, CIMAvax-EGF is a very safe 

drug that could be a feasible intervention for long-term 

control of those NSCLC patients with tumors 

depending on the EGF, capable of produce a rapid and 

durable response.  

 

CONCLUSIONS 

 

In the past thirty years ago, Zhu is the earliest to 

introduce that target therapy is mainly toward 

oncogenic receptors (also molecular “missile therapy”) 

1,101. In 1994, edrecolomab (mAb17 -1A) was the first 

to show its clinical efficacy in increasing disease-free 

survival in cancer, 3 of 20 patients with metastatic 

resected colorectal adenocarcinoma had no detectable 

disease for 10, 13 and 22 months5,124,125. Subsequently, 

more effective anti-EpCAM antibodies engineering 

(adecatumumab, catumaxomab, NEA125, ING101,and 

other EpCAM-specific immunotoxin)144,145 are used in 

clinical trials. The European Medicines Agency in 

2009 approved catumaxomab, which binds to 

oncogenic receptor EpCAM5,142,143 and enhances the 

immunological response against EpCAM- positive 

cells in malignant ascites.   

In 1998, a targeting drug trastuzumab approved by the 

US FDA was demonstrated to be enough to slow tumor 

growth and progression126-139. In HER2+ metastatic 

breast cancer, ado-trastuzumab emtansine and 

trastuzumab enables lysosomal degradation of its 

cognate oncogenic receptor HER2 or release of 

prodrugs via antibody- dependent cellular cytotoxicity 

(ADCC) 126-128,150. This burgeoning class of targeted 

chemotherapies in recent called antibody drug 

conjugates. In 2001, another novel agent called 

imatinib proved to be effective in chronic myeloid 

leukemia (CML) and received full approved by the US 

FDA in 2003140,141.  

As an orally targeting bcr-abl oncogene kinase, 

Gleevec (imatinib) has been used in breakthrough in 

treatment of chronic myeloid leukemia. Imatinib is also 

indicated for GIST patients with oncogenic receptor 

tyrosine kinase (RTKs) or also oncogenic receptor 

PDGFR mutants and KIT /or HES, and 

myeloproliferative neoplasm with oncogenic PDGFR 

fusion146-148, and inhibits activation of Ras/raf/MAPK 

or PI3k/Akt pathway. BMS-354825149 competes with 
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ATP for the ATP-binding site in the kinase domain of 

selected and related oncogenic receptor and non- 

receptor protein tyrosine kinases (PTKs), including 

BCR-ABL, c-KIT, and PDGF receptors. During the 

follow up of May 2023 in my group, a 63-year-old man 

was diagnosed as his primary hepatocellular carcinoma 

after biopsy of liver tumor tissue (2.0x2.4 cm tumor in 

the right anterior lob of his liver in August 23, 2012) 

on April 26, 2013. He had a past history of viral 

hepatitis B (HBV) infection.  

The patient was therefore performed his hepatectomy 

in other hospital, with then the combination of 

oncogenic receptor tyrosine kinase inhibitor Sorafenib 

Tosylate Tablets (initial dosage 2#/day (2 x 0.2g) x 5 

months, and then 1#/day intermittent until to 1.5 years). 

He was a long survivor now. To date, 34 more drugs 

have been introduced to clinical trials of various 

cancer. Down regulating oncogenic receptors, currently 

the first or third-line setting of targeting therapy might 

be useful in those hematological malignancies, 

metastatic and advanced cancers151-161. 

PI turnover: Phospholipase Cr (PLCr) is activated by 

receptor tyrosine kinase (RTK) through the binding of 

its SH2 (syc-homology 2) domains to phosphotyrosine 

(PY) sites of the receptor. Also, the SH2 domain binds 

specifically to sequences containing a phosphorylated 

tyrosine motif. After activation, PLCr hydrolyses its 

substrate ptdins (4, 5) p2 (PIP2) and forms two second 

messengers, diacyclglycerol (DAG) and Ins (1, 4, 5) p3 

(IP3). IP3 bind its receptor that stimulates the release 

of Ca2+ from intracellular stores. DAG activates 

members of the protein kinase C (PKC) family. The 

second messengers generated by PIP2 hydrolysis 

stimulate a variety of intracellular processes such as 

cell motility, proliferation, and angio-genesis15,16.  

PI3-K/Akt pathway: The class phosphatidylinositol 3- 

kinase (PI3-k) is activated by the majority of oncogenic 

RTKs. Like other SH2 domain-containing proteins, PI3 

kinase forms a complex with PY sites on activated 

receptor. The main function of PI3K activation is the 

generation of PIP3 (ptdins (3) p), which function as a 

second messenger to activate downstream tyrosine 

kinase Btk and Itk, the ser/thr kinase PDK1 

(phosphoinositide- dependent protein kinase 1) and Akt 

(Protein Kinase B, PKB). The major biological 

functions of Akt activation is involved in cell survival, 

anti- apoptosis and proliferation and cell growth. Akt is 

also known to be implicated in several cancers, 

particularly breast cancer. Proteins encoded by the Syc 

and ros oncogenes may functions as inositol lipid 

kinases in convert phosphatidylinositol (PI) into PtdIns 

(4, 5) P2 process15,16. 

Ras/Raf/MAPK: In Ras/MAPK signal pathway, each 

of three closely related mammalian ras oncogene (H-

ras, K-ras and N-ras) encode a 21-KD protein (p21) of 

188 or 189 amino acids which are located at the inner 

surface of the cell membrane. Ras protein are guanine 

nucleotide binding proteins with a low intrinsic 

GTPase activity that can switch from an inactive GDP-

bound form to an active GTP-bound. The 120kd 

cytoplasmic protein (referred as GAP, GTPase 

activating protein) interacts with normal Ras GTP at 

p21 effector site and stimulates its intrinsic GTPase 

activity dramatically to down-regulate Ras GTP. Ras 

p21 residues thus appear to be required for GAP 

effector binding. Also, GAP interaction may be 

essential for Ras p21 biological activity. P21 mutated 

at codons 12, 13 and 61 abolish the intrinsic GTPase 

activity, the resulting oncogenic protein can still bound 

GTP. Thus, in the signal transducing G proteins, they 

are biologically active when in the guanosine 

triphosphate (GTP)-bound form and inactive when 

bound to guanosine diphosphate (GDP)17-19. GAP is 

phosphorylated on tyrosine in response to PDGF or 

EGF.  

After stimulation of cells (in 3T3 cells and in CHO 

cells) with PDGF, GAP physically associated with 

PDGF receptor and with PI-3 kinase (Phosphatidyli-

nositol 3-kinase, 85kd), c-raf (a cytoplasmic serine/ 

threonine kinase, 74kd) and PLC-r (140kd). This 

association occurs via a SH2 domain of the receptor. A 

83 amino acids deletion in the mutant PDGF receptor 

(“kinase insert domain”) that blocks PDGF induced 

mitogenesis, also blocks binding of PI-3 kinase, but not 

PLC-r or c-raf. This deletion also blocks GAP binding, 

implying that GAP and PI-3 kinase are essential 

components of the mitogenic response. EGF also 

increases the binding of GTP to Ras p21, whereas 

GTP-binding protein may thus extend in controlling 

cyclic AMP production. Thus the association of p21 

Ras GAP with ligand-activated PDGF receptor may 

directly link growth factors and Ras signaling 

transduction from the plasma membrane into the cell17-

22,24.  

Also, the adaptor protein growth factor receptor-bound 

protein 2 (Grb2) forms a complex with SOS (son of 

sevenless) protein by the Grb2 SH3 domain. Grb2 or 

Grb2/SOS complex is recruited to the membrane by the 

Grb2 SH2 domain binding to activated PDGFR bound 

SHP2, thereby allowing interaction with Ras and the 

exchange of GDP for GTP on Ras via GTPase 

hydrolysis. Whereas the interaction between Grb2 and 

activated PDGFR occurs through interaction with the 

SHP2 protein, Grb2 binds to oncogenic EGFR through 

Shc, another adaptor protein that forms a complex with 

many receptors via its phosphotyrosine binding 

domains (PTB)17-31. This Shc-Grb2/EGFR complex 

activate Ras. After activation, subsequently, Ras 

interacts with several proteins, namely Raf. Activated 

Raf stimulates mitogen- activated protein kinase 

(MAPK) kinase (MAPKK or MEK) by 

phosphorylating a ser residue in its activation loop. 

Activated MAPK phosphorylates a variety of 

cytoplasmic substrates, as well as transcription factors 

and other kinases, when translocated into nucleus, and 

thus contribute to the regulation of different cellular 

processes such as cell survival, apoptosis, proliferation, 

differentiation, and immune responses.  
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