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Abstract 
____________________________________________________________________________________________________ 
 
Background: Worldwide, cervical cancer (CC) is the fourth most common women 
cancer. It is crucial to develop more effective treatments for this disease. We aim at 
designing new anticancer compounds with a favorable pharmacokinetic profile, 

targeting the E6 oncoprotein of human papillomavirus type 16 (HPV16 E6). 
Methods: Computer-Aided Molecular Design (CAMD) has been carried out by the 
elaboration of a Quantitative Structure-Activity Relationship (QSAR) model of 
molecular complexation, through the correlation between the relative Gibbs free 
energy (rGFE) and the observed biological activities of a series of flavonoids 
inhibitors separated in training (TS) and validation sets (VS). Starting from the 3D 
crystallographic structure of the oncoprotein HPV16 E6 (Protein Data Banck 
(PDB) input code: 4GIZ), enzyme – inhibitor complexes were built by in situ 

modification of the native ligand (FLAV1, IC50
exp= 850 nM), replacing substitution 

R-groups at nine different positions R1 – R9. 
Results: The complexation QSAR model equation (pIC50

exp=-0.5494 × 

Gcom+5.9983 (1); n=16; R2=0.98) explains 98% of the variation in biological 
activity by that of rGFE of the analogues used. The subsequent 3D pharmacophore 
model (PH4) generated from the active conformations of FLAVS (pIC50

exp= 
1.0177× pIC50

pre – 0.0927(2); n=16; R2=0.90) was used as a virtual selection tool to 
identify new analogues from a virtual library (VL) reaching two digits nanomolar 
range predicted activity.  
Conclusions: The combination of molecular modelling and in silico screening of 

VL using the PH4 pharmacophore has led to the discovery of new promising 
anticancer candidates, with favorable pharmacokinetic profiles against HPV16 E6. 
Among them, the top two predicted respective inhibitory powers IC50

 pre (50 nM 
and 61 nM). 
Keywords: Cervical cancer, flavonoids, HPV16 E6 oncoprotein, prediction of 
ADME properties, Quantitative Structure-Activity Relationship (QSAR). 

 

INTRODUCTION 
 

In 2022, cervical cancer was the fourth most common 

cancer among women worldwide, with approximately 

660.000 new cases and around 350.000 deaths1. The 

main cause of cervical cancer is persistent infection 

with human papillomaviruses (HPV), particularly the 

high-risk (HR) genotypes 16 and 18, responsible for 

about 50% and 20% of cases respectively2,3. High-risk 

HPV infections are a major global medical issue, 

accounting for 99% of cervical cancer and contributing 

to approximately 5% of all cancers worldwide4,5. HPV-
induced keratinocyte transformation is a complex 

process, marked primarily by the intracellular 

accumulation of two key viral oncoproteins, E6 and 

E7, playing a key role in disrupting cellular control 

mechanisms, thus promoting progression to 

malignancy3. The oncoprotein E6 of papillomavirus of 

type 16 (HPV16 E6) plays a crucial role in cervical 

oncogenesis4,5. It promotes the degradation of the p53 

protein, a key regulator of the cell cycle and apoptosis, 

through the E6 ubiquitin ligase (E6AP)6. The inhibition 
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of this destructive interaction is therefore a promising 

strategy for the treatment of cervical cancer. HPV 

vaccines have no therapeutic potential with limited 

access worldwide making design of new treatments a 

crucial need7. Recently, several innovative approaches 
have been explored E6 oncoprotein inhibition 

including the use of RNA interference8 to reduce viral 

protein expression. On the other hand, inhibitoric 

peptides9 have been developed against E6 and p53. 

Finally, small molecules such as luteolin10 were 

identified as potential candidates, due to their ability to 

restore the tumor suppressive activity of p53.The 

availability of the E6/E6AP crystal structure in the 

Protein Data Bank (PDB)11 opened the gate to precisely 

identify amino acid residues involved in critical 

interactions with E6. Among them, residues in the 

LxxLL binding pocket are particularly important 
because their key role in the recognition of E6 protein 

binding partners. Natural products (NP) are drawing 

interest as anti-cancer agents, particularly due to their 

accessibility, affordability, and generally lower toxicity 

compared to other synthetic molecules. Among them, 

flavonoids stand out particularly, having demonstrated 

various biological effects, such as antibacterial, 

antiviral and antioxidant ones. Furthermore, these 

compounds are known to be able to induce apoptosis in 

cancer cells, making them promising candidates for the 

development of anti-cancer treatments based on NP12. 
In this context, Srikanth Kolluru and al.13, reported 

flavonols, with the most active, FLAV1, exhibits 

anIC50
exp of 850 nM, and the x-rays crystallography 

structure of “HPV16 E6 – FLAV1”complex (PDB 

entry code 4GIZ)13. Analysis of the interactions from 

this seminal study and literature exploration led to a 

series of enough compounds with the same scaffold in 

order to build QSAR model of HPV16 E6 inhibition. 

Therefore, CAMD is suitable to release novel FLAVs 

analogs with better inhibitory potency. To achieve our 

objective, we first developed a QSAR model that 

establishes a correlation between the free energy of 
Gibbs released during the formation of “HPV16 E6-

FLAVx” complexes and their corresponding 

experimental inhibition activities. Next, we designed a 

3D-QSAR pharmacophore model (PH4) for HPV16 E6 

inhibition, based on the active conformations obtained 

through the complexation method. Subsequently, we 

generated and screened a virtual library using the PH4 

model. Finally, we evaluated the predicted activity of 

the most promising PH4-identified analogs and 

calculated their ADME profile. In a last step the 

stability of the best analogs has been checked by 
molecular dynamics (MD) simulations. The expected 

results could provide new therapeutic leads in the 

design of novel small molecule inhibitors for the 

treatment of E6-targeted cancers. 

 

METHODS 

 

In this work, the chemical structures and biological 

activities studied belong to the flavonoid family. These 

structures were divided into two sets: one for training 

set (TS) and the other for validation set (VS). 

 

Training and validation sets 

Flavonoids belong to the large family of polyphenols. 

They share a common basic structure consisting of two 

benzene rings connected by a linear three-carbon chain, 

forming an oxygenated heterocycle14. 
 

  
Figure 1: Basic skeleton common to 

flavonoids. 

 

There are a total of 14 flavones and 5 flavonols, with 

experimental inhibition concentrations taken from the 

literature respectively10,13. There are a total of nineteen 
(19) molecules with an experimental concentration of 

HPV16 E6 oncoprotein inhibition ranging from 850 to 

671000 nM respectively, wide sufficiently to allow the 

construction of a reliable QSAR model. They were 

distributed as follows: 

-  16 compounds for the trainingset (TS) and; 

-  3 compounds for model validation (VS)set. 

This distribution was done using a protocol called 

“Generate Training and Test Data” in the Discovery 

Studio 2.5 software15. 

Model building 

The construction of the QSAR model begins with the 
download of the crystallographic structure of the 

HPV16 E6–FLAV1 complex (PDB code:4GIZ). 

Indeed, the Protein – Inhibitor (IP) complexes were 

made from the crystallographic structure of HPV16 E6 

–FLAV1 using the Molecular Modelling program 

Insight II16. No water molecule is included in the 

model. The “HPV16 E6 – FLAVx” complexes were 

built by in situ modifications on the reference structure 

of “HPV16 E6 – FLAV1” complex with FLAV1 inside 

the receptor active site by replacing atom by atom , the 

appropriate fragments of the molecular structure of 
FLAV1. During these in situ modifications, the 

addition of an atom requires a local minimization 

within a radius of 5 Å around it. When adding a group 

of atoms, a systematic conformational search around 

the torsion angles (torsion drive), is necessary, 

followed by a global minimization of the protein-ligand 

complex. This procedure has a double advantage to 

avoid explosive steric contacts and take into account 

the reality (flexibility of the lateral chains of the 

receptor active site residues). 

The complete description of the computation of relative 
ligand binding affinity (ΔΔGcom) has been reported 

earlier17. 

ΔΔGcom= ΔGcom(I) − ΔGcom(Iref)=ΔΔHMM– ΔΔTSvib+ 

ΔΔGsol   (1). 

ΔΔHMM describes the relative enthalpic contribution to 

the GFE change related to the intermolecular 

interactions in E:I complex derived by molecular 

mechanics (MM), ΔΔGsol and ΔΔTSvib represent, 

respectively, the relative solvation rGFE and simplified 

relative vibrational entropy. 
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Molecular mechanics 

The FLAVs, HPV16 E6 –FLAVx complexes and 

HPV16 E6 have been refined by Molecular Mechanics 

(MM) using methodology previously described 

earlier18. 

Solvation Gibbs free energies 

The electrostatic component of solvation-free energy 

(GFE), which incorporates the effects of ionic force 

through the resolution of the nonlinear Poisson-

Boltzmann (PB) equation19, was calculated by the 

Delphi module in the Discovery Studio15 suite as 

previously detailed18. 

Molecular complexation QSAR 

First, the thermodynamic quantities ∆∆HMM, ∆∆Gsol, 

T∆∆Svib, and ∆∆Gcom were calculated for each ligand in 

the test set. The ligand FLAV1 being the most active of 

the set (IC50
exp= 850nM) was chosen as the reference 

ligand. The values of the variation of the relative free 

enthalpy of complexation are obtained by the equation: 

∆∆Gcom= ∆Gcom (I) - ∆Gcom (Iref)  

              =∆∆HMM − T∆∆Svib + ∆∆Gsol (3) with: 

- ∆∆HMM: relative variation of the complexation 

enthalpy for each inhibitor; 

- T∆∆Svib:relative variation of the complexation 

entropy; 

- ∆∆Gsolv: relative variation of complexation 

solvation enthalpy. 

Then, the experimental biological activities IC50
exp were 

correlated to the variation of the Gcom complexation 

enthalpy (model in solvent) relative to the reference 

ligand. Finally, to validate this 3D-QSAR model of 

molecular complexation, the statistical indicators of 

reliability of linear regression were calculated. 

Interaction energy 

The molecular mechanics (Eint) interaction energy 

calculation protocol available in Discovery Studio 2.515 

was used to determine unrelated interactions, including 

van der Waals and electrostatic interatomic potential 

terms, between two groups of atoms belonging one to P 

and the other to I in the P:I complexes to reach Eint 

breakdown into contributions of residues from 

individual as fully described earlier18. 

Pharmacophore generation 

The linked conformations of inhibitors, extracted from 

P:I complex models were used to build the 3D QSAR 

pharmacophore using the HypoGen algorithm of 

Catalyst20, integrated in Discovery Studio15. The 

generation process is carried out in three main stages 

using the set of most active inhibitors: (i) the 

construction phase, (ii) the subtraction phase and (iii) 

the optimization phase, as described in the work of 
Kouassi et al.17. Inactive molecules were used to define 

the volume excluded. Five HypoGen features were 

selected: hydrogen binding acceptor (HBA), 

hydrophobic, negative ionizable (Neg-Ionizable), 

heavy hydrogen binding acceptor (HBA heavy) and 

projection hydrogen bonding acceptor (HBA 

projection). The majority of protocol parameters are 

maintained at their default value except of the 

biological activity uncertainty set to 1.5. The 

uncertainty is a value between 1 and 3. This adjustment 

has reduced the uncertainty interval of experimental 

biological activity from a wide range  to a 

relatively narrow range   due to the accuracy 

and homogeneity of the values of the available 

experimental biological activities10,13. The top ten 

pharmacophores were generated with a missing 

number of functionalities to the PH4 hypothesis set at 

0. No new conformers are created when developing the 

PH4 model. The active site conformation is preserved 

during PH4 creation and superposition. Finally, the 

best pharmacophore model is selected. 

Virtual library generation 

Due to the high number of substituents (R1to R9) on the 

scaffold, the generation of the virtual library (VL) was 

done using the molecular modeling and simulation 

software MOE 201521 (Molecular Operating 

Environment). This would require first to install and 

configure MOE 201522 so that all the functionalities are 

accessible and the necessary licenses are activated. 

Then, prepare the molecular structures, which consists 

of importing structures (Load your molecules via files 

of type SDF, MOL, PDB or other supported formats). 

Molecules can be imported from an external database 
or by drawing them directly in MOE22. In this work, we 

imported the common basic structure of inhibitors in 

SD format that we converted to a SDF file type, taken 

into account by MOE and then we redefined the order 

of appearance of the different RGroups on the scaffold, 

we also specified their attachment point using the 

MOE22 “builder” menu and then draw the fragments. 

Finally, we used the option “Databases>Build 

Database” to generate a database from the imported 

scaffold and fragments drawn. 

ADME properties 
The ADME properties of inhibitors were calculated 

using the QikPropiprogram based on Jorgensen’s 

methods2,3,4 as detailed previously18. 

Pharmacophore-based library searching 

The pharmacophore model (PH4) mentioned above 

was derived from the conformations of the FLAVs 

linked to the active site of HPV16 E6. The virtual 

library was then scanned using the "pharmacophore" 

mapping protocol available in Discovery Studio 2.515. 

as described earlier18. 

Inhibitory potency prediction 

The conformer with the best match for PH4 
pharmacophore in each group of the target library 

subset was selected for in silico screening by 

complexation QSAR model. The relative GFE of the 

formation of the P:I complex in water ( Gcom) was 

calculated for each new analogue selected and then 

used to predict their inhibitory power of HPV16 E6. 

 
Molecular Dynamics Simulations 

In order to check 3D P:I complexes stability, molecular 
dynamics (MD) simulations to evaluate the stability of 

complexes formed between HPV16 E6 and flavonoid 

inhibitors (FLAVs), as well as the conformation 

flexibility of the active ligand FLAV1 and its three new 

potentials analogues in silico at the active site of 

HPV16 E6. The complexes obtained by in situ 

modification of the reference inhibitor FLAV1, 

followed by refinement through molecular mechanics 
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(MM) methods, were used as starting geometries for 

the molecular dynamics simulations performed with 

the software Desmond28
. Table 8 shows the averages of 

total energy (Etot) and potential energy (Epot) of the 

systems studied during the 2000time step simulation. 
Figure 9 shows the temporal evolution of the properties 

of the linked inhibitor, such as mean quadratic 

deviation (RMSD) from initial conformation, the radius 

of gyration (rGyr), the number of intramolecular 

hydrogen bonds (intraHB), the molecular surface 

(molSA), the solvent-accessible surface (SASA)and the 

polar surface (PSA). The interactions between the 

protein and ligand were examined throughout the 

simulation trajectory to identify specific interactions 

that were maintained during the calculation (Figure 

10). Finally, interactions that occur more than 20% of 

the time during the simulation (from 0 to 200 ns) are 

illustrated in a detailed 2D diagram (Figure 11).  

Furthermore, we superimposed the conformations of 

the ligands obtained after minimization of the 

complexes from the molecular dynamics simulations 
with those derived from the in situ modification and 

refinement of FLAV1 by molecular mechanics.  

 

RESULTS 

 

Training and validation sets 

All sixteen (16) training set compounds and all three 

(3) validation set compounds, including their 

experimental inhibitory activities, were retrieved from 

the literature and they are listed in Table 110,13.  

 

Table 1: Training and validation sets of HPV16E6 inhibitors used for the design of the Quantitative 

Structure Activity Relation (QSAR) model. 
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Table 2: Gibbs free energy (binding affinity) and its components for the HPV16E6 FLAV1-16 inhibitor 

drive assembly and the FLAV17-19 inhibitor validation assembly. 

Training set a MW
b ∆∆HMM

c ∆∆Gsol
d ∆∆TSe

vib
 ∆∆Gcom

f 

g 

[nM] 

FLAV1 318 0.00 0.00 0.00 0.00 850 
FLAV2 358 0.85 -1.15 -0.62 0.31 1100 
FLAV3 302 2.48 0.09 1.48 1 .10 4000 
FLAV4 320 1.94 -0.54 0.40 1.00 5200 
FLAV5 358 0.21 1.07 0.27 1.01 5200 

FLAV6 366 1.93 -0.22 -0.18 1.90 6900 
FLAV7 290 2.45 0.55 1.38 1.62 8100 
FLAV8 402 3.66 0.74 2.12 2.28 12500 
FLAV9 286 5.95 -1.24 2.51 2.20 23000 
FLAV10 254 5.66 -2.27 0.65 2.74 40000 
FLAV11 302 1.51 -1.09 -2.47 2.88 40000 
FLAV12 342 1.57 2.36 1.09 2.84 47300 
FLAV13 360 0.58 2.63 -0.14 3.35 48000 

FLAV14 270 7.17 0.99 3.17 4.98 382000 
FLAV15 238 9.37 -2.20 2.52 4.65 540000 
FLAV16 270 6.29 0 .29 1.44 5.14 671000 

Validation set MWb ∆∆HMMc ∆∆Gsol
 d T∆∆Svib

e ∆∆Gcom
f 

h 

FLAV17 270 6.39 -2.12 1.62 2.65 0.81 
FLAV18 376 1.23 2.11 0.50 2.83 0.87 
FLAV19 412 5.96 -2.58 -0.63 4.01 0.91 

afor the chemical structures of the training set of inhibitors see Table 1; b Mw (g/mol) is the molar mass of inhibitors;c∆∆HMM (kcal/mol) is the 

relative enthalpic contribution; d∆∆Gsol (kcal/mol) is the relative solvent effect contribution to the GFE change of E-I complex formation 
e−∆∆TSvib (kcal/mol) is the relative entropic contribution of inhibitor to the GFE of P-Ix complex formation; f∆∆Gcom (kcal/mol) is the 

overall relative GFE change of P-Ix complex formation: ∆∆Gcom ≈∆∆HMM + ∆∆Gsol − ∆∆TSvib; gIC50
exp (nM) is the experimental inhibitory 

concentration of FLAV obtained from ref10,13; hratio of predicted and experimental half-maximal inhibition concentrations. 

 

Their IC50
exp cover a relatively wide range (about 102.9) 

850 nM ≤IC50
exp≤671000 nM sufficient to allow the 

construction of a valid QSAR model. 

 

 
Figure 2: Graph of the correlation between 

pIC50
exp and rGFEΔΔGcom, HPV16E6-FLAVs in 

aqueous medium. 
White dots indicate the training set point cloud and three 

red dots the validation set point cloud. 

 

One-descriptor QSAR model 

The relative Gibbs free energy (rGFE) of the P:I 

complex formation (ΔΔGcom) was calculated for the 

complexes HPV16 E6: FLAVs. The 16 formation 

complexes (TS) and V complexes (VS) were prepared 

respectively by in situ modification of the crystal 
structure of the refined model (input code PDB 4GIZ13 

of HPV16/E6APin complex with FLAV1) as described 

in the Methods section.  Table 2 lists the values of the 

rGFE (ΔΔGcom). The QSAR model obtained highlights 

the correlation between the experimental inhibition 

potency of flavonoids and the variations in relation to a 

reference of the rGFE (ΔΔGcom) calculated by linear 

regression. The statistical data of linear regression are 

given in Table3. ΔΔGcom reflects the mutual binding 

affinity between the protein and the inhibitor. The 

resulting QSAR model of molecular complexation 
explains about 98% of the variation in biological 

activity by ΔΔGcom (Figure 3). 

Table 3: Linear regression equation of the QSAR model of complexation, statistical model reliability 

parameters and experimental inhibitory concentrations interval IC50
exp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical data of linear regression  

pIC50
exp=− 0.5494 ×∆∆Gcom + 5.9983  

Number of compound n 16 

Squared correlation coefficient of regression  0.98 

LOO cross-validated Squared Correlation coef. R2
XV 0.97 

Standard error of regression  0.14 

Statistical significance of regression. Fisher F-test 456.94 

Level of statistical significance  95% 

Range of activities  [nM] 850-671000 
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Figure 3: (A) 2D Diagram showing the interactions of the most active inhibitor, FLAV1, within the 

active site of HPV16 E6. (B): 2D diagram showing the interactions of the least active inhibitor, 

FLAV16, within the active site of HPV16 E6. 

 

 
Figure 4: Molecular mechanics intermolecular interaction energy Decomposition (in kcal/mol) of the 

contributions of residues for FLAV1, FLAV2, FLAV9 and FLAV16. 

 

Binding mode of FLAVs 

The analysis of interactions of HPV16 E6 − FLAV1 

and HPV16 E6 − FLAV16 complexes corroborates the 

experimental inhibitory activities obtained by Srikanth 

Kolluru et al13. Indeed, Figure 3 below displays the 

binding mode of the most active ligand (FLAV1) and 

least active (FLAV16) in the active site of HPV16 E6. 
We can see Arg131 in two hydrogen bonds (HB) 

contact with FLAV1 instead of one with FLAV16. The 

oxygen atom binding domain at R8 of the FLAV1 is in 

HB with Ala61and Tyr60 against only one with Tyr60 

for FLAV16. FLAV1 is in one HB with the catalytic 

residue Cys51 whereas its loss with FLAV16.  

These specific HB contacts reported by Kolluru et al.13, 

were observed for the new class of HPV16 E6 

inhibitors, except the interaction between the inhibitor 

and Tyr 60 which was not reported prior to the work of 

Kolluru et al.13, and is observed in this work. The 
superiority of interactions, notably of FLAV1’s 

hydrogen with residues from the active site of HPV16 

E6 as opposed to FLAV16, could explain the important 

stability of FLAV1 within the active site of the E6 

protein compared to other ligands in the series.  

 

Table 4: Parameters of 10 PH4 hypotheses generated for the inhibition of HPV16 E6 after the Cat-

Scramble validation procedure (49 tests scrambled for each hypothesis with a confidence level of 98%). 

Hypothesis 
RMSD a R2b 

Total costsc 
Costs 

differenced 

Closest 

Randome 

Featuref 

Hypo1 1.473 0.95 73.3 150.6 77.0 HBA, HBA, HBA, HBA, HYD 

Hypo2 1.984 0.91 90.5 133.3 102.4 HBA, HBA, HBA, HBA 

Hypo3 2.427 0.86 102.5 121.3 106.0 HBA, HBA, HBA, HBA, HBA, HBA 
Hypo4 2.429 0.86 102.8 121.1 107.3 HBA, HBA, HBA, HBA, HBA, HBA, HBA 

Hypo5 2.523 0.85 105.1 118.7 107.9 HBA, HBA, HBA, HBA 
Hypo6 2.628 0.84 109.2 114.7 110.3 HBA, HBA, HBA, HBA, HBA 
Hypo7 2.805 0.81 117.0 106.9 110.5 HBA, HBA, HBA, HBA 
Hypo8 2.807 0.81 117.0 106.8 111.5 HBA, HBA, HBA, HBA 
Hypo9 2.791 0.82 117.4 106.5 112.4 HBA, HBA, HBA, HBA, HBA, HYD 

Hypo10 2.786 0.82 117.8 106.1 112.4 HBA, HBA, HBA, HBA, HBA, HBA 
aRoot Mean Square Deviation; b Squared correlation coefficient; c Overall cost parameter of the PH4; dCost difference between Null cost 

and hypothesis total cost; e Lowest cost from 49 scrambled runs at a selected level of confidence of 98%. fHBA (hydrogen-bond 

Acceptor); HYD (Hydrophobic). The Fixed Cost=53.9with RMSD=0, Null Cost=223.9 with RMSD=4.82 and the Configuration 

cost=14.7 

A 
B 
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Figure 5: Features of the best PH4 model (Hypo1) of HPV16 E6 inhibitors generated by the 3D-QSAR 

pharmacophore module: (A)coordinates of centres: (B, C) angles and distances of centres, (D)Mapping 

tohypo1 features with FLAV1: (E)Mapping to the hypo1 features with FLAV2: (F)Correlation plot of 

experimental vs. predicted inhibitory activity. 
The data for the validation set are shown in red color; the circles represent FLAVs from the training set. Feature legend: 

HYD=Hydrophobic (cyan), HBA=Hydrogen bond Acceptor (green). 

 

Interaction Energy 

The distribution of contributions from HPV16 E6 

active site residues is useful to select substituents (R 

groups) able to improve the binding affinity of FLAV 

analogues with HPV16 E6, and thus increase their 

inhibitory power. Indeed, in the SAR (Structure-

Activity Relationship) study by Jonathan J., Cherry et 

al.10. On the training setflavones it was reported that 

the lack of the hydroxyl on the scaffold ring A and 

substitution on benzene or a heterocycle in ortho 

position restored the activity which jumped from 

23 000nM (FLAV9) to 1100 nM (FLAV2).  

 

Table 5: R groups (fragments, substituent’s) proposed for the design of the virtual library of FLAVs 

analogues. 

 
#R a, b, c, d 1 2      3    4       5    6   7  8 

R-Group H 

   
    

#R 9  10       11   12     13   14 15 

R- Group 

     
  

#R 16 

R-Group 

 

     

A 
B C 

D 

E 

F 
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Figure 6: Histograms of the frequencies of appearance of groups R1, R2, R3, R4, R6, R7, R8 and R9 for the 24 

best hits from screening by hypothesis 1. 

 

Table 6: GFE (∆∆Gcom) complexation and its components for 24 top-scoring FLAV virtual analogues. 

Analogue numbering concatenates the index of each substituent R1 to R9 with substituent numbers taken 

from Table 5. 

N° 
Analogues designed 

R1-R9 

Mw
a 

(g/mol) 

∆∆HMM
b 

(kcal/mol) 

T∆∆Svib
c 

(kcal/mol) 

∆∆Gsol
d 

(kcal/mol) 

∆∆Gcom
e 

(kcal/mol) 

IC50
pre f 

(nM) 

 FLAV1 318 0 0 0 0 850 g 
1 1-5-1-1-1-4-9-3-2 450 -4.9 -1.4 -0.8 -4.2 5 
2 1-5-1-4-1-6-1-3-1 381 -3.9 0.6 2.5 -2 80 
3 1-5-3-1-1-4-9-3-3 494 -3.2 0.7 2.9 -1 275 
4 1-5-3-2-1-4-1-3-1 412 -0.7 -0.8 0.6 0.7 2499 
5 1-5-4-1-2-3-1-3-1 412 -2.7 -2.3 0.4 0 999 
6 1-5-8-1-1-2-1-3-2 386 -0.1 0.9 0.9 -0.2 828 
7 1-5-8-7-1-1-1-3-2 399 -1 0.2 0.2 -1.1 254 

8 1-13-1-1-2-6-9-3-8 436 1.5 -2.7 -3.1 1.1 3893 
9 2-15-6-1-1-4-1-1-1 417 -9.7 -4 3.3 -2.4 50 
10 1-13-4-1-1-1-1-3-2 380 0.2 2.2 2 0 1022 
11 1-13-4-1-2-1-9-3-1 448 1.7 -2.5 -1.3 2.9 4165 
12 1-13-7-1-1-4-9-3-1 461 -2.4 0.6 0.7 -2.2 61 
13 3-5-1-3-2-1-9-3-6 481 1.7 2.8 0.5 -0.6 464 
14 3-5-1-7-2-1-9-3-3 495 3.7 0.1 -0.5 3 45880 
15 3-5-2-1-1-3-1-3-2 414 -0.1 1.2 -0.6 -1.9 88 
16 3-5-3-1-2-1-9-3-2 482 1.2 1 0.6 0.9 3107 

17 3-5-3-4-1-1-9-3-1 494 3.4 2.4 -1.3 -0.4 628 
18 3-5-4-1-1-1-9-3-2 480 0.9 -1.6 0.2 2.6 28284 
19 3-5-4-1-1-6-9-3-1 479 -1.3 -1.2 1.1 1.1 3830 
20 3-5-6-1-2-1-9-3-1 451 5.9 2.7 -0.6 2.7 29568 
21 3-5-7-1-1-4-9-3-1 493 -1.3 0.9 2.7 0.5 1944 
22 3-5-7-1-2-1-9-3-3 495 5.1 2.1 0.8 3.8 116534 
23 3-5-8-1-2-1-9-3-1 468 -2.5 0.9 4.2 0.8 2793 
24 3-5-1-6-1-4-9-3-1 479 1.7 -0.5 2.5 1 3609 

a Mw is the molar mass of the inhibitor; b ∆∆HMM is the relative enthalpic contribution to the GFE change (∆∆Gcom) of HPV16 E6 -

FLAV complex formation (fordetails, see Table 2); c∆∆Gsol is the relative solvation GFE contribution to ∆∆Gcom; dT∆∆Svib is the 

relative entropic (vibrational) contribution to ∆∆Gcom ; e ∆∆Gcom is the relative change in Gibbs free energy related to the formation of 

the HPV16 E6 -FLAV protein-inhibitor complex ∆∆Gcom ≡ ∆∆HMM - T∆∆svib + ∆∆Gsol ; f IC50
pre is the predicted inhibition potency 

towards HPV16 E6 calculated from ∆∆Gcom using the correlation equation(Table 3); g IC50
exp is given for the reference inhibitor FLAV1 

instead of IC50
pre. 
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Table 7: Predicted ADME-related properties of FLAV analogues better mapped to hypo1 and known 

anticancer of HPV16 E6 agents either in clinical use or currently undergoing clinical testing, as 

computed by QikProp24. 
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1-5-1-1-1-4-9-3-2 0 318 642.9 173.3 1154.1 3.0 2.0 9.7 2.1 -4.6 -0.4 -1.3 31.6 4.0 5 2.0 66.3 
1-5-1-4-1-6-1-3-1 0 381 616.4 181.2 1089.4 3.0 2.5 10.0 1.0 -3.7 -0.5 -2.0 11.0 4.0 80 2.0 51.1 

1-5-3-1-1-4-9-3-3 0 494 704.1 333.8 1294.1 4.0 1.0 10.5 2.9 -4.9 -0.3 -1.1 73.2 5.0 275 3.0 77.3 

1-5-8-1-1-2-1-3-2 0 386 615.4 174.4 1075.0 4.0 2.8 9.0 1.2 -4.1 -0.3 -1.5 117.0 6.0 828 3.0 71.0 

1-5-8-7-1-1-1-3-2 0 399 640.8 208.7 1128.1 5.0 3.8 9.2 0.6 -3.0 -0.3 -1.4 21.3 8.0 254 2.0 54.3 

2-15-6-1-1-4-1-1-1 0 417 657.6 0.0 1170.9 5.0 3.5 7.3 2.6 -4.7 -0.2 -2.8 0.8 2.0 50 1.0 39.8 

1-13-7-1-1-4-9-3-1 0 461 680.9 132.8 1217.1 4.0 4.0 9.3 -0.6 -4.6 -0.2 -2.0 1.1 4.0 61 1.0 24.0 

3-5-1-3-2-1-9-3-6 0 481 686.5 306.9 1261.8 5.0 2.5 10.2 2.3 -4.9 -0.1 -1.1 283.0 7.0 464 2.0 84.0 
3-5-2-1-1-3-1-3-2 0 414 640.0 312.1 1155.6 5.0 2.0 10.0 1.3 -3.7 -0.3 -1.4 222.5 7.0 88 2.0 76.8 

3-5-3-4-1-1-9-3-1 0 494 693.6 291.2 1273.3 4.0 1.0 10.5 3.0 -4.8 -0.3 -0.9 93.4 5.0 628 3.0 79.5 

Gemcitabine 0 263 454.0 93.7 737.8 4.0 5.0 9.1 -1.5 -2.1 -0.8 -1.8 35.0 4.0 
 2.0 45.6 

Ifosfamide 0 261 439.1 268.7 740.9 3.0 1.0 8.5 0.8 -1.7 -1.0 0.4 4086.7 2.0 
 3.0 96.0 

Topotecan 0 421 677.4 361.5 1234.4 5.0 2.0 10.5 1.0 -2.9 -0.2 -1.1 53.0 6.0 
 3.0 63.8 

Fluorouracile 5 130 291.0 0.0 426.6 0.0 2.0 3.5 -0.9 -1.1 -0.7 -0.8 155.8 0.0 
 2.0 61.0 

a designed FLAV analogs and known anticancer agents, Table 6; b drug likeness, number of property descriptors (24 out of the full list of 49 

descriptors of QikProp, ver. 3.7,release 14) that fall outside of the range of values for 95% of known drugs; cmolar mass in [g.mol-1] (range for 

95% of drugs: 130–725 g.mol-1 ) [46] ;d total solvent-accessible molecular surface, in [Å2] (probe radius 1.4 Å) (range for 95% of drugs: 300–

1000 Å2 );e hydrophobic portion of the solvent-accessible molecular surface, in [Å ] (probe radius 1.4 Å) (range for 95% of drugs: 0–750 Å2  ); 
ftotal volume of molecule enclosed by solvent-accessible molecular surface, in [Å3 ] (probe radius 1.4 Å) (range for 95% of drugs: 500–2000 

Å3); g number of non-trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds (range for 95% of drugs: 0–15) ;h 

estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution. Values are averages taken 

over several configurations, so they can assume non-integer values (range for 95% of drugs: 0.0–6.0); i estimated the number of hydrogen 

bonds that would be accepted by the solute from water molecules in an aqueous solution. Values are averages taken over a number of 

configurations, so they can assume non-integer values (range for 95% of drugs: 2.0–20.0);j logarithm of partitioning coefficient between n-

octanol and water (o/w) phases (range for 95% of drugs:    2–6.5); k logarithm of predicted aqueous (wat) solubility, logS. S in mol dm´3 is the 

concentration of the solute in a saturated solution that is in equilibrium with the crystalline solid (range for 95% of drugs:   6.0–0.5);l logarithm 

of predicted binding constant to human serum albumin (range for 95% of drugs: −1.5 to 1.5); m logarithm of predicted brain/blood partition 

coefficient (range for 95% of drugs: −3.0 to 1.2); npredicted apparent Caco-2 cell membrane permeability in Boehringer-Ingelheim scale in [nm 

s -1 ] (range for 95% of drugs: < 25 poor, > 500 nm s-1  great); o number of likely metabolic reactions (range for 95% of drugs: 1–8); p predicted 

constants  , was predicted from computed ∆∆Gcom using the regression Equation (B) shown in (Table 3) ; q human oral absorption (1=low, 

2=medium, 3=high); rpercentage of human oral absorption in gastrointestinal tract (<25%=poor, >80%=high); * star in any column indicates 

that the property descriptor value of the compound falls outside the range of values for 95% of known drugs. 

 

Flavones with those structural modifications are among 

the most active (1100 nM ≤IC50
exp≤12500 nM) of the 

TS compounds; others except for FLAV1 (more active 

ligand) are largely part of the moderately active ligands 

23000 nM ≤IC50
exp≤48000 nM and less active 

382000nM ≤IC50
exp≤671000nM. For more information 

on the different interactions between FLAVs and 

HPV16 E6 responsible for their inhibition potency, we 

first performed aQSAR model of molecular 

complexation allowing us to identify the active 

conformations of the FLAVs and derive the 

contributions of individual residues filling hydrophobic 

and hydrophilic pockets in view of the nature of the 

substituents of the FLAV1, FLAV2, FLAV9 and 

FLAV16.  

The interaction energy analysis is displayed on Figure 

4. The comparative analysis of the per residue 
energetic contribution shows that the individual IE 

contributions of the catalytic residues of the HPV16 E6 

active site are similar for the three classes of inhibitors, 

except for Arg102, which shows negligible energetic 

contributions for FLAV9 and FLAV16 as observed on 

Figure 3. 

In lack of structural clues from IE breakdown to 

enzyme active site residues contribution, we retained a 

combinatorial approach to the design of new analogues 
virtual library and screen it with the help of HPV16 E6 

inhibition pharmacophore (PH4) derived from the 

complexation model QSAR. The best hits are evaluated 

subsequently by our QSAR model (pIC50
pre

= - 0. 5494 

×∆∆Gcom+5.9983). ∆∆Gcom is the relative variation of 

the relative Gibbs free energy of each best hit 

formation. 

Ligand-Based 3D-QSAR Pharmacophore Model of 

Inhibitory Activity 

The 3D-QSAR pharmacophore protocol of the 

Discovery Studio molecular modeling15 program 

provides the 3D-QSAR pharmacophore for HPV16 E6 
inhibition which was generated from the active 

conformations of the 16 ligands in the training set 

(FLAV1-16) covering a range of experimental 

activities 850 nM ≤IC50
exp≤671 000 nM and evaluated 

by the other 3 in the validation set[FLAV17 
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(IC50
exp

=40 000 nM), FLAV18 (IC50
exp

=62 200 nM) and 

FLAV19 (IC50
exp

=77 000 nM)]. The PH4 3D-QSAR 

generation was carried out in three stages: constructive, 

subtractive and optimization (Mehodes section). 

During the construction phase, FLAV1 was selected as 
a priority because it is the unique molecule that meets 

the threshold criterion IC50
exp≤Uncert × min (IC50

exp)  

× 850.  

It was then used to generate the characteristics of the 

starting pharmacophore. The uncertainty is  because 

the molecules are not from the same laboratory, so the 

experimental inhibition activities will not be measured 

under the same conditions. “Uncert” is a value between 

1 and 3. During the subtraction phase, HypoGen 

eliminates the characteristics present in more than half 

of the molecules it considers as inactive, that is those 

with IC50
exp> 850 × 103.5=2 687 936 nM. Therefore, 

none of the ligands in the formation set were found to 

be inactive, and no functionality of the initial 
pharmacophore was removed. Finally, during the 

optimisation phase, the pharmacophore hypothesis 

scores were improved. The hypotheses selected are 

validated on the basis of these scores, which assess the 

differences in the activity estimates obtained from the 

regression, as well as the complexity of the 

pharmacophore, using a simulated annealing 

approach16.  

 

 

                
FLAV 1-5-1-1-1-4-9-3-2 

                                
FLAV 2-15-6-1-1-4-1-1-1 

                     
FLAV 1-13-7-1-1-4-9-3-1 

 
 

Figure 7: (Left), Close-up of the virtual response of the three new potential developed analogues FLAV1-5-

1-1-1-4-9-3-2, FLAV2-15-6-1-1-4-1-1-1 andFLAV1-13-7-1-1-4-9-3-1 in active site HPV16 E6 and (right), 

their respective conolly surface. 
The binding site surface is colored according to residue hydrophobicity: red—hydrophobic, blue—hydrophilic, and white—intermediate. 
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Figure 8: Molecular mechanics Intermolecular interaction energy breakdown to residue contributions, in 

[kcal.mol-1] shown for the three best designed novel FLAV analogs and FLAV1, most active ligand of 

training set (the color coding refers to ligands and is given in the legend). 

 

This algorithm applies in fact perturbations to the 

pharmacophore developed during the construction and 
subtraction phases in order to optimise the score. After 

optimisation, the ten best pharmacophore hypotheses 

were retained. The cost values, correlation coefficients, 

RMSDs, pharmacophore functionalities and maximum 

goodness-of-fit values for the ten highest-ranked 

hypotheses (Hypothesis 1 to Hypothesis 10) are 
presented in Table 3. These hypotheses were selected 

on the basis of important statistical criteria, such as a 

high correlation coefficient, low total cost and a 

reduced RMSD value. 

 

 
Figure 9: Time-evolution of the properties of the four HPV16 E6-FLAVs complexes during 200 ns MD 

simulation. 
For each inhibitor, top to bottom: plot of the root mean square deviation (RMSD) with respect to the initial conformation vs. the simulation time, 

radius of gyration (rGyr), number of intramolecular hydrogen bonds (intraHB), molecular surface area (molSA), solvent-accessible surface area 

(SASA), and polar surface area (PSA). 

 

The reliability of the generated pharmacophore models 

was assessed as a function of the cost parameters, 

which ranged from 73.3 (hypothesis 1) to 117.8 

(hypothesis 16). The small variation between the cost 

values reflects the homogeneity of the hypotheses 

generated and the consistency of the training set. For 

this pharmacophore model, the fixed cost (53.9) is 

lower than the zero cost (223.9), with a difference of 

∆=169.9. This difference is a key indicator of the 

quality and predictability of the model (∆>70 indicates 

a high probability of more than 90% that the model 

represents a true correlation).  
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Figure 10: Contribution of individual active site residues to inhibitor binding in HPV16 E6 -FLAVs complexes 

present during MD simulations. 
HB (green); ionic interactions (magenta); hydrophobic contacts (purple); water bridges (blue). 

 
A hypothesis is considered statistically significant if its 

total cost is close to the fixed cost and far from zero 

cost. For the 10 hypotheses, the minimum cost 

difference is 106.1, which indicates the high quality of 

the pharmacological model. In addition, standard 

indicators such as the root mean square deviation 

(RMSD) range from 1.610 (hypothesis 1) to 3.809 

(hypothesis 10) and the correlation coefficient (R²) is 

between 0.82 and 0.95. The configuration cost, which 

is 14.68 for all hypotheses, well below 17, confirms the 

relevance of the model. Thus, the first hypothesis, with 

a cost of 73.3, close to the fixed cost (53.9) and with 

the best RMSD and R² correlation coefficient values 

(Table 3), was selected for the in silico screening of the 

virtual library of FLAV analogues. The additional 

statistical parameters for the regression of pIC50
exp 

against pIC50
pre calculated from Hypothesis 1 for the 

training setare: pIC50
exp=1.0177 × pIC50

pre - 0.0927 

(n=16, R²=0.90, R²xv=0.89, F-test=129.07, σ=0.284, 

α> 98%). These parameters are in accordance with the 

OECD QSAR guidelines28. 

 

Table 8: Ensemble averages of the total and potential energies of complexes HPV16 E6-FLAVfor FLAV1and 

selected virtual hits. 

Inhibitors Structure 
Etot

a
 

[kcal.mol-1] 

Epot
b

 

[kcal.mol-1] 

IC50
pre

(nM)
 

c
 

FLAV1 

 

-69300.711 -85603.486 850d 

FLAV1-5-1-1-1-

4-9-3-2 

 

-70464.527 -87034.650 5 

FLAV2-15-6-1-

1-4-1-1-1 

 

-79018.161 -97567.268 50 

FLAV1-13-7-1-

1-4-9-3-1 

 

-74867.709 -92455.159 61 

aEnsemble average of the total energy Etot of  the system (Sum of potential energy Epot and kinetic energy E kin); bEnsemble average of the 

potential energy Epot; 
cIC50

pre was predicted by QSAR model (Table3, correlation Equation) for the designed analogues. d Experimental IC50
exp 

for the FLAV1. *FLAV1 is the co-crystallized ligand in the crystallographic structure of HPV16E6/E6AP (PDB 4GIZ)11 
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Figure 11: 2D representation of the most populated attractive interactions between the function groups of the 

four inhibitors and the individual residues at the active site of HPV16 E6 that occur in at least in 1/5 of the 500 

analysed frames. 
 

To assess the predictive power of the pharmacophore 

model, we calculated the ratio between the activities 

predicted by the PH4 model and those observed 

experimentally (pIC50
pre/pIC50

exp) for the validation set 

(FLAV17-19). The following ratios were obtained 

FLAV17: 1.021, FLAV18: 1.022 and FLAV19: 1.022. 

All ratios were close to one, demonstrating the strong 

predictive power of this regression for the optimal PH4 

model. Another evaluation of hypothesis 1 is the 

mapping of the PH4 binding mode in the 3D QSAR 
(see Figure 5) of the most active flavonols FLAV1 and 

FLAV2. Jonathan J., Cherry et al.10, reported that the 

new flavones synthesised on the basis of the FLAV9 

structure, notably, FLAV2, are all in a hydrophobic 

pocketat the interface between HPV16 E6 and 

ubiquitin ligase (E6AP). Figure 5 illustrates the 

correlation and the detailed geometry as well as the 

position of the hypothesis 1 features for HPV16 E6 

inhibition by FLAV1 and FLAV2.  

In silico screening of FLAVs library 

We have constructed a targeted virtual library (TVL) of 

novel flavonoid compounds with the aim of 

contributing to a more potent oral small-molecule 

targeted therapy against HPV16 E6. To do this, we 

substituted small fragments (R1 to R9) for the different 

aromatic rings of the FLAV scaffold based on 

structural information gathered10, including the absence 
of hydroxyls on ring A of the FLAV9 scaffold, which 

if replaced by a substituted benzene or heterocycle in 

the ortho position(R2) would restore activity. With 

regard to the flavone analogues used10, we note that the 

presence of fragments (OCH3, -CF3) in the ortho 

position would contribute to improve biological 

activity 1100 nM ≤IC50
exp≤5200 nM. 

                                                                                 
                                        FLAV1(RMSD=0.31Å)                             FLAV 1-5-1-1-1-4-9-3-2 (RMSD=9.01Å 

                                                                                            
                             FLAV 1-13-7-1-1-4-9-3-1 (RMSD=0.46Å)          FLAV 2-15-6-1-1-4-1-1-1 (RMSD=0.74Å) 

 

Figure 12: Superimposition of the ligand active conformation from complexes refined by molecular 

mechanics.  
Green carbons, red oxygens, blue nitrogens) and averaged active conformations resulting from MD simulations (purple carbon atoms. 

http://www.ujpr.org/


Bléhoué et al.,                                                           Universal Journal of Pharmaceutical Research 2024; 9(5): 51-67                            

   

ISSN: 2456-8058                                                                  64                                                  CODEN (USA): UJPRA3    

It was also proposed other substituents of a hydrophilic 

nature that would facilitate hydrogen bond contacts 

with the residues of the HPV16 E6 active site, which 

could improve the activity of the analogues proposed 

by Srikanth Kolluru et al13. Consequently, depending 
on the position of R-groups on the FLAVs scaffold, we 

have specified the type of suitable fragments. Table 5 

shows the different fragments associated with the 

scaffold R-groups. Considering the nature of the 

substituents proposed on the flavonoid scaffold 

according to the position of the R groups, a 

combinatorial library of the following size was 

constructed: R1 (7) × R2 (5) × R 3 (7) × R 4 (7) × R 5 (2) 

× R 6 (7) × R 7 (8) × R 8 (7) × R 9 (7)=9,411,920 new 

analogues. This library was then filtered without 

violating Lipinski's rules (molecular weight greater 

than 500 daltons)2930 and Veber's rules, which take into 
account 5 criteria (validity, efficacy, biocompatibility, 

economy and reproducibility) 30. This led us to a virtual 

library (VL) of 304,628 molecules, screened using the 

PH4 3D QSAR Hypo1 model of HPV16 E6 inhibition. 

The best fitting analogues (PH4 best hits) were then 

screened using the QSAR complexation model. The 

relative Gibbs free energies (∆∆Gcom) calculated for 

HPV16 E6-FLAVs complex formationwith their 

components and predicted inhibitory concentrations 

obtained from the QSAR model complexation 

correlation equation (Table 3 and Table 6). 

Analysis of New Inhibitors 

The design of the virtual library of new analogues was 

guided by structural information derived from the 

active conformation of FLAVs, used to select 

appropriate substituents at positions R1, R2, R3, R4, R5, 

R6, R7, R8 and R9. In order to identify substituents that 

could generate new inhibitor candidates with enhanced 

predictive biological activities against HPV16 E6, we 

constructed frequency histograms for substituents at 

positions R1, R2, R3, R4, R5, R6, R7, R8 and R9 from the 

24 top hits from PH4 screening (Figure 6). 

These histograms show that substituents (1) and (3), 
including hydrogen atom (H) and methoxyl (OCH3), 

are the most frequent in position R1, with frequencies 

of appearance of 11and 12 respectively. 

The fragments in position R2, in particular fragment 

(5), acetamidin is the most repetitive and is followed 

by the substituent (13) pyrrole with frequencies of 

appearance of 19and 4 respectively. 

As for the substituents in position R3, the substituents 

with the highest frequency of occurrence are 

substituents 1(H) and4 (COOH), with frequencies of 6 

and 5 respectively.  
Concerning the fragments in position R4, the relative 

histogram reveals that substituent (1) is the most 

important with an appearance rate of 17. 

As for the frequency of appearance of the fragments in 

position R6, the corresponding histogram shows that 

substituent 1(H) appeared most frequently in this 

position with a frequency of 11, followed by fragment 

4 (COOH) which appeared 6 times. As for the 

histogram related to the substituents in position R7, it is 

observed that fragment 9 (-CF3) is in first place in this 

position with a significant number of occurrences of 

16, followed by substituent (1) with an occurrence 

value of 8.  

The histogram showing the frequency of appearance of 

substituents in position R8 shows that fragment (3), 

methoxyl (OCH3) is the most repeated in this position, 
with a maximum appearance score of 23.  

As for the substituents in position R9, according to the 

corresponding histogram, we note that the substituent 

with the most occurrences is hydrogen atom (1) with a 

frequency of occurrence of 12, and then we have 

hydroxyl (2) with a score of 7. 

It is important to specify that the substituents at 

position R5 are substituent 1 (H) or 2 (OH) with 

frequencies of appearance of 15 and 9, respectively.  

In view of the above, the proposed 24 new FLAV 

analogues are mainly flavones, since the hydrogen 

atom containing fragment (1) appeared most frequently 
at position R5 with an appearance score of 15. The 

hydroxyl (OH) appeared only 9 times. In addition, the 

fragment 5 in position R2, the heterocycle acetamidin 

has a strong appearance with a maximum score of 19 

for 19 analogues out of 5 remaining analogues divided 

into four appearances of the fragment (13) namely 

pyrrole and one appearance of benzoic acid 

(fragment15). 

ADME Profiles of Designed FLAVs 

The properties related to ADME such as Caco-2 cell 

permeability, blood-brain partition coefficient, octanol- 
water partition coefficient, aqueous solubility, number 

of likely metabolic reactions, serum protein binding 

and another eighteen descriptors related to absorption, 

distribution, metabolism, and excretion (ADME) were 

calculated by the QikProp program24 for the new best 

FLAV analogues (Table 7). The method of Jorgensen 

is used by this program. Empirical data from more than 

710 compounds including about 500 drugs and related 

hetero-cycles were used to produce regression 

equations correlating experimental and computed 

descriptors resulting in an accurate prediction of 

pharmacokinetic properties of molecule. The 
pharmacokinetic profile of the best designed FLAV 

analogues is favourable compared with current 

anticancer compounds in use or in clinical trials. 

 

DISCUSSION 

 

Binding Mode of FLAV 

The measurements of HPV16 E6 inhibition by small 

molecules belonging to the flavonoid family were 

reported by Srikanth Kolluru et al13. The 

Intermolecular stacking interactions between 
FLAV1(IC50

exp=850 nM)and HPV16 E6 of 

hydrophobic nature (pi-alkyl, pi- sulphur) and 

hydrogen bonds (see Figure 3) were the main 

determinants of the better affinity with the target. 

Using the SAR study of new flavones synthesised on 

the basis of the chemical structure of FLAV9 against 

HPV16 E6 by Jonathan J., Cherry et al.10, we were able 

to extend our data set with known inhibition 

concentrations for the implementation of the QSAR 

molecular complexation model. This allowed us to 

identify the active conformations of the FLAV 
analogues used. 
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The specificity of the newly synthesised flavones, 

resulting from the absence of hydroxyls on the A-ring 

of FLAV9 in positions R1 and R3, replaced by a 

heterocycle or benzene substituted in the ortho 

position, in particular R2, allowed the biological 
activity to be restored from 23,000 nM (FLAV9) to 

1,100 nM (FLAV2), the most active flavone in this 

series of inhibitors. These molecules bind in a 

hydrophobic pocket between HPV16 E6 and the 

ubiquitin ligase (E6 AP). Using the known molecular 

specificity of FLAVs, we were able to build a virtual 

library of specific R1, R2, R3, R4, R5, R6, R7, R8 and R9 

fragments that can be accommodated inhydrophobic or 

hydrophilic pockets, such as hydrogen bonds. 

The virtual screening of new FLAV analogues by the 

pharmacophore whose hypothesis1 allowed us to 

identify the best hits. These, evaluated by the QSAR 
model (pIC50

pre=-0.5494×∆∆Gcom+5.9983).Among 

them is a potential new flavone, FLAV 1-5-1-1-1-4-9-

3-2(∆∆Gcom= - 4.2; IC50
pre= 5 nM), which is substituted 

in R5 by the substituent 1(H) and respects the structural 

modification reported by Jonathan J., Cherry et al. In 

fact, the fragment in ortho position such as R2 is a 

substituted heterocycle, in particular acetamidin 

(fragment 5), and the substituents in positions R1 and 

R3 are all hydrogen atoms (fragment 1). 

In addition to this new potential flavone analogue 

developed in silico corroborating with the work of 
Jonathan J., Cherry et al.10, our study allowed us to 

discover important new flavones although the cycle A, 

substituted at position R2 by a heterocycle, also has 

substituents in the R3 or R4 position, other than 

fragment 1 (H). Among these we can cite: 

- FLAV 1-13-7-1-1-4-9-3-1(∆∆Gcom =- 2.22; 

IC50
pre= 61 nM), substituted in position R3 by the 

fragment 7(-CH2NH2), which is 14 times more 

active than FLAV1; 

- and FLAV 2-15-6-1-1-4-1-1-1 (∆∆Gcom =- 2.38; 

IC50
pre= 50 nM) where A-cycle is substituted in 

the R1 and R3 positions respectively by fragment 

2 (OH) and fragment 6 (-NH2) and which is 17 

times more active than FLAV1. It is important to 

remember that flavonol FLAV1 is the most active 

ligand of the training set (IC50
exp= 850 nM), which 

is followed by the flavone FLAV2 with IC50
exp= 

1100 nM. 
The observed intermolecular interactions (see Figure 7) 

between HPV16 E6 oncoprotein and new flavones are 

responsible for the stability of the newly developed 

flavones, which is reflected in the different ∆∆Gcom 

values used to account for it. 

In fact, these interactions are hydrogen bonds, van der 

Waals, hydrophobic and halogen. Referring to Figure 

7, it is noted that the interactions of hydrophobic nature 

are of the type: 

- Pi-sulphur, for which the A-cycle FLAV 2-15-6-1-

1-4-1-1-1 (IC50
pre= 50 nM) formed a Pi-sulfur 

interaction with the residue Cys51; 

- Pi-cation, where only the fragment 13 (pyrrole) in 

R2 position of cycle A of FLAV 1-13-7-1-1-4-9-3-

1(IC50
pre= 61 nM) formed an interaction pi- cation 

with Tyr 70; 

- Pi-Pi stacked, for which only the C cycle of the new 

FLAV 1-5-1-1-1-4-9-3-2 (IC50
pre= 5 nM) and 

FLAV2-15-6-1-1-4-1-1-1 (IC50
pre= 50 nM) 

maintained this interaction with Tyr 70; 

- Pi -Alkyl, where virtually A and B cycles of our 
threenew potential flavones analogues formed a Pi -

Alkyl interaction with the Leu50 and their 

respective C cycle also formed this interaction with 

the residue Val 62. 

The residues of amino acid Leu50, Cys51, Val 62 and 

Tyr 70 also make from residues belonging to the 

hydrophobic pocket of HPV16 E6 for different FLAVs 

in complex such as FLAV9, taxifolin, alizarin30. 

It is important to specify the presence of a fluorine 

halogen interaction observed in the active 

conformations of FLAV 1-5-1-1-1-4-9-3-2 (IC50
pre= 5 

nM) and FLAV 1-13-7-1-1-4-9-3-1(IC50
pre=61 nM) 

within the active site of HPV16 E6, in which 

respectively two atoms of fluorine substituted to the 

carbon atom (-CF3 ) whose fragment 9 at position R7 

on the C cycle of the scaffold form respectively a 

halogen interaction with an electron donor atom of Ala 

61 contrary to FLAV 1-13-7-1-1-4-9-3-1(IC50
pre= 61 

nM), where a fluoride atom forms a double halogen 

interaction with the catalytic residue Cys51 and Ala61 

and the other two fluorine atoms form this type of 

interaction respectively with Cys51 and Ala61. 

Thus, this new halogen interaction observed in the 
active conformations of these best new analogues 

proposed, marked by the presence of a halogen 

fragment at R7 would be promising in the search of 

more potent oncoprotein HPV16 E6 inhibitors. 

Considering the diversity and particularity of the 

structures of our three new potential analogues 

designed with 4.9 nM ≤IC50
pre≤60.5 n Min relation to 

their in silico inhibition potency, these molecules are 

worth being synthesised and evaluated biologically in 

the development of small therapeutic molecules for the 

treatment of HPV infection and cervical cancer. 

Molecular dynamics simulations 
Small differences between the superposition of active 

FLAV inhibitor conformations modelled by in situ 

modification of FLAV1 using MM and those obtained 

via MD (Figure 12), suggest that the best modelled 

HPV16 E6 -FLAVs complexes are stable for FLAVs2-

15-6-1-1-4-1-1-1 (IC50
pre= 49.7 nM) and 1-13-7-1-1-4-

9-3-1(IC50
pre= 60.5 nM) respectively. These complexes 

respectively have RMSD values below 3Å (see 

Figure12), which generally indicates good stability of 

the complexes during simulation32. The FLAV 1-5-1-1-

1-4-9-3-2 although by virtual screening and its 
evaluation by correlation equation of the QSAR model 

is potentially inhibiting with IC50
pre= 5 nM, this one, is 

less stable referring to the molecular dynamics 

calculation (RMSD=9.01). 

Consequently, the FLAVs 2-15-6-1-1-4-1-1-1 (IC50
pre= 

50 nM) and 1-13-7-1-1-4-9-3-1(IC50
pre= 61 nM) newly 

designed flavones with predicted inhibitory potency 17 

and 14 times that of the most active training set 

FLAV1 (850 nM) can be proposed for synthesis and 

subjected to biological evaluation32. 
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Limitations of the study 

The main limitation of our MM-PB study is the fact 

that the inhibitors and their experimental inhibition 

concentrations used for the QSAR model of molecular 

complexation do not come from the same laboratory, 
although the relative variation in the free enthalpy of 

complexation ∆∆Gcom allowed us to explain the 

variation in the biological activity of the inhibitors used 

for the QSAR model of molecular complexation. 

 

CONCLUSIONS AND RECOMMENDATIONS       

 

The study of identification of potential flavonol pocket 

(FLAV1, FLAV3, FLAV10, FLAV11 and FLAV17) 

on HPV16 E6 and the structural SAR study of luteolin 

derivatives (FLAV9) as new target inhibitors, guided 

us in the preparation of a QSAR model for reliable 
complexation of HPV16 E6 inhibition which is 

correlated with the calculated relative Gibbs free 

energies to form a complex with observed HPV16 E6 

inhibition potencies. 

In addition, we developed a PH4 3D-QSAR model 

from active flavonoid conformation (FLAV) using a 16 

FLAVs training set and a 3 FLAVs validation set with 

known experimental inhibition activities. A careful 

analysis of the interactions between the residues from 

the active site of HPV16 E6 and the FLAV has directed 

us to design a first virtual combinatorial library of new 
analogues of FLAV with multiple substitutions in 

position R2 and R7 for hydrophobic groups and 

hydrophilic groups in position R1, R3, R4, R5, R6, R8 

and R9. The library screening by matching analogues to 

the PH4 pharmacophore allowed for selection of a 

subset of FLAV in the library. This subset of the 24 

best virtual results was submitted to the calculation of 

inhibitory potencies predicted by the QSAR 

complexation modelin the two digits nanomolar range 

of concentration. 

By molecular dynamics simulations, we verified the 

stability of new potential analogues and retained the 
following FLAVs: FLAV 2-15-6-1-1-4-1-1-1 (IC50

pre= 

50 nM) and FLAV 1-13-7-1-1-4-9-3-1(IC50
pre=61 nM) 

generated by computer-aided molecular design 

(CAMD) are recommended for synthesis and 

biological evaluation. 
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