
Kouman et al.,                                                         Universal Journal of Pharmaceutical Research 2024; 9(5): 91-104                            

   

ISSN: 2456-8058                                                                91                                                  CODEN (USA): UJPRA3    

  Available online at www.ujpronline.com 
       Universal Journal of Pharmaceutical Research 

      An International Peer Reviewed Journal 

   ISSN: 2831-5235 (Print); 2456-8058 (Electronic) 

     Copyright©2024; The Author(s): This is an open-access article distributed under the terms of 

         the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any                

medium for non-commercial use provided the original author and source are credited 
         
         

 

RESEARCH ARTICLE                                                  

 

VIRTUAL DESIGN OF NOVEL OF ORALLY BIOAVAILABLE PIPERAZINE 

INHIBITORS OF ENOYL-ACYL CARRIER PROTEIN REDUCTASE OF 

MYCOBACTERIUM TUBERCULOSIS WITH FAVORABLE 

PHARMACOKINETIC PROFILES 
Koffi Charles Kouman

1
, Affiba Florance Kouassi

1
, Yves Kily Hervé Fagnidi

1,2
,  

Issouf Fofana
1

, Koffi N’Guessan Placide Gabin Allangba
1,3,4,5

, Mélalie Kéita
1

,  

Eugene Megnassan
1,6,7,8,9  

1Applied Fundamental Physics Laboratory (LPFA), Nangui Abrogoua University, Ivory Coast. 2Science and Technology Training 
and Research Unit, Alassane Ouattara University, Ivory Coast. 3Laboratoryof Environmental Sciences and technologies, Jean 
Lorougnon Guédé University, Ivory Coast. 4Laboratory of Biophysics and Nuclear Medicine (LBNM), Félix Houphouët-Boigny 
University, Ivory Coast. 5Department of Medical Physics, University of Trieste and International Centre for Theoretical Physics 
(ICTP), Trieste, Italy. 6Laboratory of Structural and Theoretical Organic Chemistry, Félix Houphouët-Boigny University, Ivory 
Coast. 7International Center for Theoretical Physics, ICTP-UNESCO, Coastal Road 11, I-34151 Trieste, Italy. 8International 

center for applied research and sustainable technology, SK-84104 Bratislava.  9Laboratory of Crystallography-Molecular Physics, 

Félix Houphouët-Boigny University, Ivory Coast. 

 

Article Info: 
_______________________________________________ 
 

Article History: 

Received: 21 July 2024 

Reviewed: 13 September 2024 

Accepted: 20 October 2024 

Published: 15 November 2024 

_______________________________________________ 

Cite this article:  

Kouman KC, Kouassi AF, Fagnidi YKH, Fofana 

I, Allangba KNPG, Kéita M, Megnassan E. 

Virtual design of novel of orally bioavailable 

piperazine inhibitors of enoyl-acyl carrier 

protein reductase of Mycobacterium tuberculosis 

with favorable pharmacokinetic profiles. 

Universal Journal of Pharmaceutical Research 

2024; 9(5): 91-104. 

http://doi.org/10.22270/ujpr.v9i5.1216  

______________________________________________ 
 
*Address for Correspondence: 

Yves Kily Hervé Fagnidi, Applied 

Fundamental Physics Laboratory (LPFA), 

Nangui Abrogoua University, Ivory Coast. 
Science and Technology Training and Research 

Unit, Alassane Ouattara University, Ivory Coast. 

Tel: +225-01-02-90-66-85;   

E-mail:  kfagnidi@yahoo.fr    

 

  

Abstract 
____________________________________________________________________________________________________ 
 
Background: Drug-resistant strains have been a real problem for anti-tuberculosis 

therapies in recent decades. Here we elaborated the virtual rational design and 
evaluation of a novel class of piperazine (PPZ) analogs as InhA-Mt inhibitors with 
a favorable pharmacokinetic profile. 
Method: By in situ modification of the crystal structure of InhA-PPZ1 (Protein 
Data Bank (PDB) entry code: 1P44), which is the reference structure of a test set of 
12 PPZs with their known inhibitory potencies experimental data (IC50

exp), we 
prepared three-dimensional (3D) models of Inha-PPZx complexes. A structure 
activity relationship (SQR) model was built in the gas phase in the search for active 
conformations of PPZ 1-12 linearly correlating the calculated enthalpy of 

formation of the InhA-PPZ complex and thepIC50
exp. Finally Lipinski's rule of 5 

was used to filter the VCL which was subsequently screened by the pharmacophore 
model. The predicted activities of the new PPZ analogs obtained were evaluated 
with the initial QSAR and their pharmacokinetic profile was also evaluated.  
Results: The virtual combinatorial library of more than 310,550 PPZ analogs was 
filtered by Lipinski's rule until it reached 19,044 analogs. Virtual screening by the 
pharmacophore made it possible to select 50 potential new analogues with 
predicted inhibitory potencies up to 100 times better than that of PPZ1 (IC50

exp=160 

nM). The predicted pharmacokinetic properties of the new analogues showed high 
cell membrane permeability, side effects and high human oral absorption compared 
to current anti-TB candidates. 
Conclusions: The combined use of molecular modeling and PH4 in virtual 
screening makes it possible to propose new powerful anti-tuberculosis drugs with 
favorable pharmacokinetic profiles. 
Keywords: ADME, InhA inhibitors, Piperazine, pharmacophore, QSAR, 
tuberculosis, virtual screening.   

 

 

INTRODUCTION 
 

Tuberculosis is as old as humanity itself. It has 

afflicted kings and queens, poets and politicians, 

revolutionaries and writers, activists and actors. Most 

of its victims, however, are poor, marginalised or 

malnourished, and the out-of-pocket costs associated 

with treating TB expose them to financial hardship or 
drive them further into poverty. TB is the definitive 

disease of deprivation. Turning the tide on TB means 

screening and treatment for those it strikes, and 

preventing it by addressing its drivers and developing a 

new vaccine. Only by working together can we turn the 

tide against this ancient killer is the position of the Dr. 
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Tedros Adhanom Ghebreyesus, Director-General of 

World Health Organization according the 2024 WHO 

report1.We can prevent and curate tuberculosis disease. 

But in 2023 tuberculosis disease will probably once 

again become the main cause of death due to a single 
infectious agent in the world, after 3 years during 

which it was the corona virus (COVID 19) which was 

the primary cause and which caused approximately 

twice as many deaths compared to HIV/AIDS. Every 

year, more than 10 million people continue to contract 

tuberculosis and this has been increasing since 20211. 

The World Health Organization (WHO) and United 

Nations (UN) Member States have adopted urgent 

action to end the global tuberculosis epidemic by 

20301. Recent decades have seen no new anti-

tuberculosis drugs on the market despite the increasing 

incidence of tuberculosis worldwide and the threat to 
public health. Bedaquiline, a new antimycobacterial, 

approved at the end of 20122 inhibits adenosine 5′-

triphosphate (ATP)-synthase of MTb with good clinical 

efficacy against multiple resistant strains. However, 

this drug has cardiovascular side effects3.  

Diversification of mycobacterial drug targets is 

therefore imperative in combating the increasing 

incidence of drug-resistant MTb strains. The synthesis 

of type II fatty acids (FAS-II system) of MTb is 

ensured by the key role of the oxidoreductase activity 

of the carrier protein enoyl-acyl reductase (InhA or 
ENR). The elongation cycle of mycolic biosynthesis is 

catalyzed by this essential enzyme which is an essential 

element of the mycobacterial cell wall4. InhA is a 

promising drug target and is validated by anti-

tuberculosis agents. Additionally, the WHO Special 

Program for Research and Training in Tropical 

Diseases (TDR) has listed it in its target database as an 

attractive pharmacological target for the design of new 

drug candidates5,6. “The term totally resistant (TDR-

TB) has emerged to mean infection with a strain 

resistant to all first- and second-line drugs”7. As a 

prodrug, the isoniazid (INH) molecule is used as a 
first-line drug in the prevention and treatment of 

tuberculosis. INH, activated by the bacterial catalase-

peroxidase enzyme (KatG), couples isonicotinic acyl 

with the reduced form of nicotinamide adenine 

dinucleotide (NADH) forming an isonicotinic acyl-

NADH complex. This complex binds tightly to InhA, 

blocks the natural substrate and prevents the action of 

fatty acid synthesis, which hinders mycolic acid 

synthesis8. In the fight against multidrug-resistant 

(MDR-TB), extensively drug-resistant (XDR-TB) and 

total drug-resistant (TDR) tuberculosis. -TB)", major 
interest is therefore focused on compounds which can 

directly inhibit InhA without requiring activation by 

KatG9. The discovery of inhA inhibitors that do not 

require KatG activation is a research activity of several 

working groups based on different scaffolds: triclosan9, 

diphenyl ether10,11, pyrrolidinecarboxamide12, 

arylamide derivatives13, benzamide derivatives with 

Tyr158 'out' conformation and interaction with the 

Phe41 and Arg43 pocket instead of the stacking with 

Phe9714, thiadiazole-based InhA inhibitors iand 

Piperazine derivatives with Tyr158 'out' conformation 
and interaction with NADH cofactor15. Each of its 

different compounds displays intermediate inhibitory 

power. Studies show that a potent InhA inhibitor 

should be a relatively long molecule that binds InhA 

adjacent to the NADH cofactor binding site. Also this 

inhibitor should have a bulky group that selectively 
inserts into a hydrophobic pocket of InhA constituted 

by residues Met155, Pro193, Ile215, Leu217, Leu218 

and Trp222 located near a larger cavity accessible to 

the solvent16. The main objective of this work was the 

design of novel potent nanomolar inhibitors of 1-(9H-

fluoren-9-yl)-piperazine (PPZ) based on a series of 12 

compounds (training set) and 3 other compounds ( 

validation set) nanomolar inhibitors with inhibitory 

potencies observed as low as IC50
exp=160 nM16. From 

the in situ modification of the crystal structure of the 

InhA-PPZ1 complex (PDB: 1P44), we have developed 

a QSAR model which correlates the Gibbs free 
energies of the formation of the InhA-PPZx complexes 

with the IC50
exp powers and we have determined the 

active conformations of PPZs bound to the active site 

of Mt InhA (MM-PB complexation approach). Based 

on the active conformations of the inhibitors in the test 

set, we established a 3D QSAR activity pharmacophore 

of InhA (PH4) inhibition. Subsequently we generated a 

large virtual library of compounds sharing the PPZ 

scaffold and this was screened in silico with PH4. The 

virtual screening led to inhibitor results that exhibited 

predicted inhibitory potencies IC50pre more than 100 
times lower than that of the most active test set 

compound PPZ1. Finally, the selected hits were 

subjected to complexation simulations to evaluate the 

inhibitory activity predicted for the best analogues and 

to calculate their ADMET profile.  

 

MATERIAL AND METHODS 

 

Structural studies and bioassays (IC50
exp) of our studied 

piperazines derivatives (PPZ) InhA inhibitors were 

taken from literature16. The efficacy range of inhibitory 

concentrations (160≤ IC50
exp ≤ 51000 nM), allows us to 

realize QSAR models. The whole series of 15PPZs 

were divided into a training (TS) and a validation (VS) 

sets of 12 and 3PPZs respectively16. 

Model building 

The whole complex (E:I), with free InhA (E) and 

inhibitor (I) was resolved to a reliability factor of 1.7 Å 

containing the Genz-10850  (PPZ1) bound to InhA 

(Whose crystallographic data entry code 1P4417,18 from 

Discovery Studio 2.5 software19. Virtual design plan to 

result in new PPZ analogs with higher predicted 

activity is presented in scheme 1. The structures (E and 
E:I complexes) were at the neutral pH=7 and neutral N- 

and C-terminal residues, all protonizable and 

ionizableaminoacids being charged, without any 

crystallographic water molecules. The inhibitors were 

built into the 1P44 structure by in situ replacing 

derivative groups of the PPZ1 moiety followed by 

systematic conformational search of the replacing 

group coupled with a careful energy minimization of 

the modified inhibitor and surrounding InhA active site 

residues20-35. 
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Molecular mechanics 

Molecular mechanics using the CFF97 force field 

allowed the modeling of inhibitor complexes, InhA and 

E-I28 as described previously28. 

Conformational Search 
For conformational research we recommend reading 

the following articles21,30,36. 

Solvation Gibbs free energies 

As for the free solvation energy has been described 

perfectly by the following articles30. 

Calculation of Binding Affinity and QSAR Model 

The GFE calculation of the binding affinity expressed 

as complexation has been detailed earlier28. 

Interaction energy 

For interaction energy refer to the full description we 

reported formerly13,24,25. 

Pharmacophore generation 
From the E-I complex models, we used the bound 

conformations of the inhibitors to construct a 3D-

QSAR pharmacophore model (PH4) using the Catalyst 

HypoGen algorithm19 implemented in Discovery 

Studio19 as described earlier28. 

Virtual library generation 

The virtual library was generated according to the 

method described previously28. 

ADME properties 

The drug similarity selection criterion was used to 

target the initial virtual library, as previously 
described28. 

Pharmacophore-based library searching 

Derived from the bound conformations of PPZs at the 

active site of InhA, the pharmacophore model (PH4) as 

presented in the “Pharmacophore generation” section 

served as a library search tool as previously 

described28. 

Inhibitory potency prediction 

The conformer with the best mapping on the PH4 

pharmacophore in each cluster of the focused library 

subset was used for  calculation and IC50 pre 

estimation (virtual screening) by the complexation 
QSAR model as described earlier37. 

 

RESULTS 

 

Training and validation sets 

A heterogeneous series of InhA inhibitors was selected 

with their known and experimentally determined 

inhibitory activities coming from the same laboratory 

(Table 1), constitutes the training set consisting of 12 

PPZs and the validation set consisting of 3 other 

analogues16. First, 1-(9H-fluoren-9-yl)-piperazine was 
synthesized bearing modifications around the carbonyl 

hydrogen bond acceptor. Using 1-(9H-fluoren-9-yl)-

piperazine (3), compounds 2 and 4 to 8 were 

synthesized in low yields. Additionally, direct 

sulfonylation was used for the synthesis of 

benzenesulfonyl derivatives 5a – b to obtain the desired 

products16. The entire series was obtained by five-

position variations of the substituents on the phenyl 

rings in Table 1. Experimental concentrations at half 

maximum inhibition (160 ≤ IC50
exp ≤ 51,000 nM)16 

cover a wide range of concentrations sufficiently 
extend for building a reliable QSAR model. 

One descriptor QSAR models  

From the model of the refined crystal structure (pdb 

entry code: 1P44)16  we prepared by in situ 

modification each InhA-PPZx complex (Table 1) of the 

training set (TS) numbering 12 and those of the 
validation set (VS) numbering of 03 as described in the 

Method section. We thus calculated for each of the 15 

optimized enzyme-inhibitor complexes the relative 

Gibbs free energy of the formation of the InhA-PPZx 

complex (∆∆Gcom). The calculated values ∆∆Gcom 

and its components as described previously28 are 

presented in table 2 for the TS and VS of piperazine16. 

The QSAR model explained variation in the PPZs 

experimental inhibitory potencies (pIC50
exp=–

log10(IC50
exp)16 by correlating it with computed GFE 

∆∆Gcom through linear regression (eq. B), Table 2. The 

complexation enthalpy ∆∆HMM was calculated in the 
gas phase and then correlated with pIC50

exp to seek 

better insight into the binding affinity of PPZs toward 

MtInhA. The effect of the solvent and the loss of 

entropy of the inhibitor during its binding to the 

enzyme not being initially taken into account, the 

validity of this linear correlation (for statistical data 

from the regression (Table 3) made it possible to 

evaluate the importance of inhibitor-enzyme 

interactions (∆∆HMM). This correlation explains 

approximately 88% of the variation in the pIC50
exp data 

and shows the significant role of the enthalpy 
contribution in the binding affinity of the ligand to the 

active site. Likewise, the more advanced descriptor, 

namely the GFE of the InhA-PPZx complex formation 

containing all components: ∆∆HMM, ∆∆TSvib and 

∆∆Gsol, has been evaluated (Table 3). The large 

relationship between the 3D model of inhibitor binding 

and the observed inhibitory potencies of PPZs is 

explained by the relatively high values of the 

regression coefficient R2, the cross-validated 

regression coefficient R2xv and the Fischer F test of 

the correlation suggests16. Therefore, the active 

conformation of PPZs bound to the InhA binding site 
allowed the generation of the PH4 pharmacophore and 

access to structural information derived from the 3D 

models of InhA-PPZx. These complexes can then be 

expected to lead to a reliable prediction of InhA 

inhibitory potencies for new PPZ analogues, based on 

the QSAR B model, Table 3. The validity of the 

correlation equations (A) and (B) illustrated in Figure 1 

are confirmed by the statistical data. The 

pIC50
pre/pIC50

exp ratio ≅ 1 (pIC50
pre values were 

estimated using correlation equation B, Table 3) 
calculated for the entire PPV13-15 validation set 

documents the substantial predictive power of the 

QSAR model complexation of table 2. Thus, the 

regression equation B (table 3) and the calculated GFE 

∆∆Gcom can be used to predict pIC50
pre inhibitory 

potencies against MtInhA for novel PPZ analogs, 

provided they share the same binding mode as the 

entire PPZ1-12 piperazine test set.  
Binding mode of PPZs 

In the crystal structure of InhA –PPZ116 the 

substitution at R-groups of the piperazine derivative 

scaffold of the inhibitor sits in a hydrophobic cavity of 
the active-site surrounded by side chains of 

http://www.ujpr.org/
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predominantly non polar residues: Pro 99, Gly 104, 

Met103, Tyr158, Phe149and Met161, Met 98, Ala 198. 

According to the structures of PPZ8 and PPZ5 studied 

by docking simulations, the presence of the methyl 

group at the C2 position of the aryl moiety causes 
steric hindrance due to the restricted space in the cavity 

formed by Met103, Tyr158, and Met161 residues of 

MtInhA. In contrast to the recently reported methyl 

thiazoles that interact with MtInhA in a “Tyr158-out” 

binding mode direct inhibitors such as 

pyrrolidinecarboxamides38 and piperazine-indole 

derivatives39 have explored polar interactions involving 

a ribose hydroxyl, the Tyr158 hydroxyl and a hydrogen 

bond acceptor in the compounds.  
Interaction Energy 

Additional key structural information was given by the 

interaction energy diagram (IE, ΔEint) which was 
obtained from four inhibitors of the test set. The 

decomposition of the IE into contributions from InhA 

active site residues is very useful for proposing 

relevant R groups that could enhance the binding 

affinity of PPZ analogs to MtInhA and, subsequently, 

improve the inhibitory potency. A comparative analysis 

of the EI calculated for the PPZs of the test set (Figure 

3) broken down into three classes (highest activity 

(PPZ1), moderate (PPZ5 and PPZ8) and lowest 

(PPZ12)) was carried out. to identify residues for 

which the contribution to binding affinity could be 

increased. However, comparative analysis showed 

approximately the same level of contribution to the EI 
of active site residues for all three classes of inhibitors. 

However, no suitable substitutions with the ability to 

improve binding affinity as previously reported for 

thymine-type inhibitors of the thymidine mono-

phosphate kinase Mt design could be proposed26. Based 

on this, we adopted a combinatorial approach for the 

design of novel PPZ analogues and screened in silico a 

virtual library of 310,500 PPZ analogues using the PH4 

pharmacophore of InhA inhibition derived from the 

QSAR complexation model. As can be seen by EI 

analysis (Figure 3), the piperazine class (TS and VS)16 

does not show obvious interaction energies with the 
residues of the hydrophobic pocket all around the 

aromatic ring. 

3D-QSAR Pharmacophore Model 
The molecular modeling program Discovery Studio20 

through its interaction generation protocol provides the 

characteristics of the pharmacophore of the active site 

of a protein. InhA mainly presents hydrophobic 

characteristics at the active site27,28,30.  

 

Table1: Training set (PPZ1-12) and validation set (PPV13-15) of InhA inhibitors used in the preparation of 

Quantitative Structure Activity Relation (QSAR) models of inhibitor binding. 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

Training set ppz1 ppz2 ppz3 

R 

 

 

 

 (nM) 160 220 240 

Training set ppz4 ppz5 ppz6 

R 

 

 

 

 (μM) 250 360 400 

Training set ppz7 ppz8 ppz9 

R 

 

 

 

 (μM) 900 5990 9770 

Training set ppz10 ppz11 ppz12 

R 

  
 

 (μM) 19960 50100 51000 

Validation set ppz1 ppz2 ppz3 

R 

   
 (μM) 183 1570 1690 
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Table 2: Gibbs free energy (binding affinity) and its components for the training set of InhA inhibitors. 

PPZ1-12 and validation set inhibitors PPV13-15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a for the chemical structures of the training set of inhibitors shown in Table 1; b Mw is the molecular mass of inhibitors; c ∆∆HMM is the relative 

enthalpic contribution to the Gibbs free energy change related to enzyme-inhibitor (E:I) complex formation derived by molecular mechanics 

(MM): ∆∆HMM – [EMM{E:Ix} ´ EMM{Ix}] ´ [EMM{E:Iref} ´ EMM{Iref}], Iref is the reference inhibitor PPZ1; d ∆∆Gsol is the relative solvation Gibbs 

free energy contribution to the Gibbs free energy change of E:I complex formation: ∆∆Gsol=[Gsol{E:Ix} ´ Gsol{Ix}] ´ [Gsol{E:Iref} ´ Gsol{Iref}]; e 

∆∆TSvib is the relative entropic contribution of inhibitor Ix to the Gibbs free energy related to E:I complex formation: ∆∆TSvib=[∆∆TSvib{Ix}E ´ 

∆∆TSvib{Ix}] ´ [∆∆TSvib{Iref}E ´ ∆∆TSvib{Iref}]; f ∆∆Gcom – ∆∆HMM + ∆∆Gsol ´ ∆∆TSvib is the relative Gibbs free energy change related to E:Ix 

complex formation:; g IC50
exp is the experimental half-maximal inhibitory concentration of InhA inhibition obtained from reference; h Ratio of 

predicted and experimental half-maximal inhibition concentrations pIC50
pre/pIC50

exp (pIC50
pre=´log10IC50

pre) was predicted from computed ∆∆Gcom 

using the regression equation for InhA shown in Table 3. 

 

The high flexibility of the pocket due to the high 

mobility of the side chains Tyr158, Phe149 and the 

substrate binding loop (Thr196-Gly208) is often in the 

design of competitive substrate inhibitors40. 

Generation and validation of 3D-QSAR 

pharmacophore 

The generation of the 3D-QSAR inhibitory 

pharmacophore of InhA was done based on the active 

conformations of the 12 PPZ1-12 training set and 

evaluated by the 3 PPV13-15 validation set covering a 

wide range of experimental activity (160 - 51000 nM). 

The generation process was performed in three main 
steps: constructive, subtractive and optimization19 as 

described earlier30. PPZ1 in the constructive phase was 

retained as the main one because only its activity met 

the threshold criterion (IC50
exp ≤5/4×160 nM) and was 

used to generate the starting pharmacophore feature. 

Then in the subtractive phase. In the subtractive phase 

of the threshold criterion, compounds for which: 

IC50
exp >160×103.5 nM=505 968 nM were considered 

inactive. According to this criterion, none of the PPZx 

in the training set was inactive and no starting PH4 

feature was removed. 
Finally the score of the pharmacophore hypotheses was 

improved during the optimization phase. These 

hypotheses were scored by taking into account the 

errors in the activity estimates from regression and 

complexity via a simulated annealing approach. At the 

end of optimization, the top 10 pharmacophore 

hypotheses were retained, all of which had five-point 

characteristics. The cost values, correlation 

coefficients, root mean square deviation (RMSD) 

values, pharmacophore characteristics, and max-fit 

value of the top 10 hypotheses (Hypo1−Hypo10) are 

listed in Table 4. These hypotheses were selected based 

on significant statistical parameters, such as high 

correlation coefficient, low total cost, and low RMSD 

value. The generated pharmacophore models were then 
evaluated for their reliability based on the calculated 

cost parameters ranging from 51.9 (Hypo1) to 72.8 

(Hypo10). The homogeneity of the generated 

hypotheses and the consistency of the PPZx TS is 

supported by the small and relative gap between the 

highest and lowest cost parameter. Then The fixed cost 

(32.01) is lower than the zero cost (579.53) by a 

difference Δ=547.52 for this pharmacophore model. 

This difference is a major quality indicator of the 

predictability of the PH4 (∆>70 corresponds to an 

excellent chance or a probability greater than 90% that 
the model represents a strong correlation)19.  
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Table 3: Analysis of computed binding affinities ∆∆Gcom, its enthalpic component ∆∆HMM, and 

experimental half-maximal inhibitory concentrations pIC50
exp=-log10IC50

exp of PPZs towards 

MtInhA. 
 

 

 

 

 

 

 

 

 

 

 

 

 

The statistical data confirmed validity of the correlation equations (A) and (B) plotted on Figure 1. The ratio pIC50
pre/pIC50

exp≅ 1 (the pIC50
pre 

values were estimated using correlation eq. B, Table 3) calculated for the validation set PPV13-15 documents the substantial predictive power 

of the complexation QSAR model from Table 2. Thus, the regression equation B (Table 3) and computed ∆∆Gcom GFEs can be used for 

prediction of inhibitory potencies IC50
pre against MtInhA for novel PPZ analogs, provided that they share the same binding mode as the training 

set piperazine PPZ1-12. 

 

This difference is a major quality indicator of the PH4 

predictability (∆ > 70 corresponds to an excellent 

chance or a probability higher than 90% that the model 

represents a true correlation19). Statistically, a 

hypothesis to be significant must be close enough to 

the fixed cost and far enough from the zero cost. For 

the 10 hypotheses, the difference ∆ ≥ 506.68, attests to 

the high quality of the pharmacophore model. Between 

the different hypotheses, the standard indicators such 

as the RMSD covered from 1.75 to 2.60 and the 

squared correlation coefficient (R2) is in an interval of 

0.98 to 0.96. For a more in-depth analysis, the first 

hypothesis PH4 with the closest cost (51.9) to the fixed 

cost (32.01), the best RMSD and the best R2 was 

retained.  

      

Figure 1: (A): plot of correlation equation between pIC50

exp
 and relative enthalpic contribution to the 

GFE, ∆∆HMM [kcalmol-1]. (B): Similar plot for relative complexation Gibbs free energies of 

the InhA-PPZx complex formation ∆∆Gcom [kcalmol
-1

] of the training set.  
The validation set data points are shown in orange color. 

 

       

 
Figure 2: (A):2D schematic interaction diagram of the most potent inhibitor 116 at the active site of InhA of Mt. 

(B): Connolly surface of the active site of MtInhA with bound most active designed PPZ 1 (IC50
pre=160M).  

The binding site surface is colored according to residue hydrophobicity: red - hydrophobic, blue - hydrophilic and white - intermediate. 

Statistical Data of Linear Regression (A) (B) 

(A)   

(B)   

Number of compound  n 12 12 
Squared correlation coefficient of regression R2 0.88 0.92 
LOO cross-validated squared correlation coefficient R2

xv 0.87 0.91 
Standard error of regression σ 0.32 0.26 

Statistical significance of regression. Fisher F-test 96.18 150.76 
Level of statistical significance  (%) 95% 95% 

Range of activities IC50
exp [nM] 160 – 51000  

A 
B 
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Figure 3: Molecular mechanics intermolecular interaction energy Eint breakdown to residue contributions in  

[kcal.mol-1] for PPZ1 (160 nM), PPZ5 (360 nM), PPZ8 (5990 nM), PPZ12 (51000 nM). 

 

Table 4: Parameters of 10 generated pharmacophoric hypotheses for InhA inhibitor after Cat- Scramble 

validation procedure (49 scrambled runs for each hypothesis at the selected level of confidence of 98%). 

Hypothesis RMSDa R2b 
Total 

costsc 

Costs 

differenced 

Closest 

Randome 
Featuref 

Hypo 1 1.75 0.98 51.9 527.58 66.1 HBA, HYD-Ar, HYD-Ar, HYD, HYD 
Hypo 2 1.75 0.98 52.0 527.56 82.6 HBA, HYD-Ar, HYD, HYD, HYD 
Hypo 3 1.80 0.98 54.0 525.54 105.7 HBA, HYD, HYD, HYD, HYD 
Hypo 4 1.82 0.98 54.4 525.16 115.8 HBA, HYD-Ar, HYD, HYD, HYD 
Hypo 5 2.00 0.98 57.4 522.09 120.5 HBA, HYD-Ar, HYD, HYD 
Hypo 6 2.02 0.98 57.5 521.98 128.5 HBA, HYD-Ar, HYD-Ar, HYD 

Hypo 7 1.99 0.98 57.6 521.92 133.3 HBA, HYD-Ar, HYD, HYD 
Hypo 8 2.23 0.97 65.2 514.31 136.9 HBA, HYD, HYD, HYD 
Hypo 9 2.39 0.97 68.2 511.32 140.3 HBA, HYD-Ar, HYD, HYD 

Hypo 10 2.60 0.96 72.8 506.68 142.4 HBA, HYD, HYD, HYD 
Fixed Cost 0 0 32.01    
Null Cost 9.64 0 579.53    

aRoot Mean Square Deviation; bSquared correlation coefficient; c Overall cost parameter of the PH4; dCost difference between Null cost 

and hypothesis total cost; e Lowest cost from 49 scrambled runs at a selected level of confidence of 98%. fHBA (hydrogen-bond 

Acceptor); HYD (Hydrophobic). The Fixed Cost=32.01 with RMSD=0, Null Cost=579.53 with RMSD=9.64 and the Configuration 

cost=9.65 

 

 
Figure 4: Pharmacophoric features. (A): coordinates of centers, (B and C): angles and distances of 

the centers, (D): mapping of the pharmacophore of InhA inhibitor with the most potent molecule 

PPZ1, (E): the correlation plot of experimental vs predicted inhibitory activity.   
Feature legend: HYDA=Hydrophobic Aliphatic (blue), HYD=Hydrophobic (cyan), HBA=Hydrogen bond Acceptor (green) 

 

The different statistical data for all the hypotheses 

(costs, RMSD, R2) are listed in Table 4. The 

configuration cost (9.65 for all hypotheses) far below 
17 confirms this pharmacophore as a reasonable 

one.The regression equation for pKiexp vs. pKi
pre 

estimated from Hypo1: pIC50
exp =0.9961 × pIC50

pre + 

0.0226 (n=12. R2=0.97. R2
xv=0.96. F-test=294. σ=0.18, 

α > 98%) is also plotted on Figure 4. Therefore, the 

PH4 is good potentially to choice the new PPZ analogs. 

These parameters are in accordance with the OECD 

QSAR guidelines41. The predictive power of the 
pharmacophore model is assessed by calculating the 

ratio between the activities predicted by the PH4 model 

and those observed experimentally (pIC50
pre/pIC50

exp) 

for the whole set of compounds in the validation set 

(PPV13-15).  
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Table 5: R groups (fragments, substituent’s) proposed for the design of the virtual library of PPZs 

analogues. 

 
R1 

1 2 3 4 5 6 

   
 

 
 

R2 

1 2 3 4 5 6 
 

 

 

 

 

 

 

   

7 8 9 10 11 12 

      

13 14 15 16 17 18 

   
   

19 20 21 22 23 24 

     
 

R3 

1 2 3 4 5 6 

      
7 8 9 10 11 12 

 
 

    

13 14 15 16 17 18 

  
 

   

19 20 21 22 23 24 

      
 

25 26 27 28 29 30 

  
 

   
 

R4 

1 2 3 4 5 6 

      
7 8 9 10 11 12 

  
    

13 14 15    

      

R5 

1 2 3 4 5  

     
 

 

The high predictive power of the PH4 model regression 
is optimal and is demonstrated by the ratios that are all 

close to one. Another assessment of hypothesis 1 is the 

mapping of the PH4 binding mode in the 3D QSAR 

(Figure 4) of the most active PPZ1. We can perform 

computational design and selection of new PPZ 

analogues with high inhibitory potencies against 

MtInhA based on a strategy using the notable presence 

of hydrophobic features included in the best 

pharmacophore model. 

Virtual Screnning 

As demonstrated in our previous work28 on inhibitor 
design, virtual screening of a virtual combinatorial 

library can lead to the identification of positive hits of 
novel analogues. 

Virtual library 

Substitution of small fragments (R1 to R5) on the 

aromatic ring of the PPZ scaffold allowed the 

generation of an initial virtual combinatorial library 

based on the collected structural information16. All R 

groups present in Table 5 were attached to positions R1 

to R5 of the PPZ scaffold to form a combinatorial 

library of the size: R1 × R2 × R3 × R4 × R5=6 × 23 × 

30 × 15 × 5=310,500 analogues. This initial diversity 

library was generated from building blocks (chemicals) 
listed in the databases of available chemicals42.  
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Table 6: GFE (∆∆Gcom) complexation and its components for 50 top-scoring PPZ virtual analogues. 

 
Designed analogs 

R1- R5 
Mw

a
[gmol

-1
] 

ΔΔHMM 

b
 

[kcalmol
-1

] 

ΔΔGsol 

c
 

[kcalmol
-1

] 

ΔΔTSvib

 d
 

[kcalmol
-1

] 

ΔΔGcom 

e
 

[kcalmol
-1

] 

IC50

pre f 

[nM] 

N°  ppz1 393 0.00 0.00 0.00 0.00 160
g 

1 1-4-21-1-4 419 2.23 -1.81 1.61 -1.18 111.34 

2 1-8-1-11-1 498 1.57 -1.38 -4.41 4.60 1080.60 

3 1-9-29-8-4 494 4.41 -1.60 -1.77 4.59 1077.43 

4 1-5-21-1-1 451 0.44 -0.04 -3.22 3.62 734.97 

5 1-12-5-12-4 456 -5.75 1.36 -1.53 -2.86 57.61 

6 1-19-15-12-4 455 7.86 -3.09 -0.53 5.30 1421.31 

7 1-20-4-8-4 433 3.18 -2.44 -0.35 1.08 271.27 

8 1-19-21-13-2 463 -1.93 -2.07 0.22 -4.22 33.78 

9 1-13-6-6-2 482 -1.94 0.90 -3.00 1.96 383.05 

10 1-21-7-2-4 493 -13.73 1.78 -0.66 -11.29 2.10 

11 2-11-21-2-4 496 2.05 -3.29 -4.43 3.18 619.76 

12 2-1-21-7-1 483 -1.33 -1.13 -4.26 1.80 359.45 

13 2-12-12-6-4 474 -3.16 -0.75 -5.23 1.32 298.21 

14 2-12-15-6-1 493 -7.59 -1.80 -4.99 -4.40 31.47 

15 2-12-7-12-4 488 -10.46 1.00 -0.12 -9.34 4.51 

16 2-20-29-7-4 489 -14.26 0.07 1.56 -15.75 0.36 

17 2-20-12-8-1 481 -3.86 -0.83 -2.76 -1.92 83.26 

18 4-1-7-9-4 480 -13.59 0.54 0.10 -13.14 1.01 

19 4-2-21-12-2 482 -4.66 0.00 -1.38 -3.28 48.76 

20 4-1-29-4-4 444 -3.25 -1.38 0.20 -4.84 26.47 

21 4-2-11-1-4 480 -0.51 -2.48 -0.01 -2.98 54.91 

22 4-8-8-1-4 452 -10.02 -1.56 1.83 -13.41 0.91 

23 4-9-6-8-4 480 -13.01 -0.56 0.52 -14.10 0.70 

24 4-8-27-12-1 480 -9.43 -0.31 -0.37 -9.37 4.46 

25 4-6-22-13-2 493 -8.01 2.86 -4.15 -1.00 119.68 

26 4-6-29-7-4 486 -8.61 0.90 5.15 -12.86 1.13 

27 4-7-21-2-4 463 4.69 -0.63 -0.77 4.83 1184.21 

28 4-13-6-5-1 462 2.04 3.35 2.05 3.33 657.46 

29 4-15-22-2-4 476 -3.98 3.28 -3.52 2.81 535.77 

30 4-13-4-8-4 432 0.49 -0.46 0.12 -0.09 171.45 

31 4-12-9-4-1 478 -6.29 2.27 -1.45 -2.56 64.80 

32 4-15-7-6-1 491 -10.36 2.85 0.72 -8.23 6.98 

33 4-20-9-13-4 449 -5.84 0.57 2.68 -7.94 7.81 

34 4-20-2-7-2 498 -4.96 0.46 -4.23 -0.26 159.96 

35 4-19-12-13-2 474 0.20 0.94 -2.77 3.92 827.69 

36 4-20-7-6-2 493 -5.26 2.95 2.49 -4.81 26.81 

37 4-20-5-12-1 459 -2.05 2.40 1.38 -1.04 117.77 

38 4-20-8-1-1 453 -2.94 -0.23 -1.79 -1.37 103.31 

39 4-22-21-8-4 457 8.60 -0.38 3.31 4.91 1222.27 

40 4-22-29-6-4 482 -0.66 0.34 6.09 -6.41 14.29 

41 4-22-29-15-4 481 -7.01 4.95 1.87 -3.93 37.81 

42 4-22-22-2-4 487 2.78 1.20 2.49 1.50 319.13 

43 4-22-21-13-2 475 8.43 1.26 0.53 9.17 6510.26 

44 4-22-8-13-4 458 3.71 0.20 2.61 1.29 294.78 

45 6-7-6-8-4 489 -1.84 0.59 0.00 -1.25 108.27 

46 6-1-8-12-4 461 -3.34 1.84 -3.49 2.00 388.45 

47 6-20-2-12-4 460 -3.00 2.06 -0.55 -0.39 152.02 

48 6-21-7-5-4 498 -4.98 2.41 2.31 -4.88 26.00 

49 6-20-13-5-1 460 1.70 0.78 -2.98 5.46 1514.82 

50 6-20-27-4-4 444 -0.59 1.73 4.03 -2.89 56.86 

Analogs numbering concatenates the index of each substituent R1 to R5 with substituent numbers taken from Table 5. 

a Mw is the molar mass of the inhibitor; b ∆∆HMM is the relative enthalpic contribution to the GFE change (∆∆Gcom) of InhA -PPZ 

complex formation (for details, see Table 2); c∆∆Gsol is the relative solvation GFE contribution to ∆∆Gcom; dT∆∆Svib is the relative 

entropic (vibrational) contribution to ∆∆Gcom ; e ∆∆Gcom is the relative change in Gibbs free energy related to the formation of the 

InhA -PPZ protein-inhibitor complex ∆∆Gcom ≡ ∆∆HMM - T∆∆svib + ∆∆Gsol. 
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Table 7: ADME-related properties of the best designed PPZ analogs and known antituberculotic agents 

either in clinical use or currently undergoing clinical testing computed by QikProp. 

 

 

a designed PPZ analogs and known antituberculosis agents, Table 6; b drug likeness, number of property descriptors (24 out of the full list of 49 

descriptors of QikProp, ver. 3.7,release 14) that fall outside of the range of values for 95% of known drugs; cmolar mass in [g.mol-1] (range for 95% 

of drugs: 130–725 g.mol-1 ) [46] ;d total solvent-accessible molecular surface, in [Å2] (probe radius 1.4 Å) (range for 95% of drugs: 300–1000 Å2 );e 

hydrophobic portion of the solvent-accessible molecular surface, in [Å ] (probe radius 1.4 Å) (range for 95% of drugs: 0–750 Å2  ); ftotal volume of 

molecule enclosed by solvent-accessible molecular surface, in [Å3 ] (probe radius 1.4 Å) (range for 95% of drugs: 500–2000 Å3); g number of non-

trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds (range for 95% of drugs: 0–15) ;h estimated number of hydrogen 

bonds that would be donated by the solute to water molecules in an aqueous solution. Values are averages taken over several configurations,  so 

they can assume non-integer values (range for 95% of drugs: 0.0–6.0); i estimated the number of hydrogen bonds that would be accepted by the 

solute from water molecules in an aqueous solution. Values are averages taken over a number of configurations, so they can assume non-integer 

values (range for 95% of drugs: 2.0–20.0); j logarithm of partitioning coefficient between n-octanol and water (o/w) phases (range for 95% of 

drugs:    2–6.5); k logarithm of predicted aqueous (wat) solubility, logS. S in mol dm´3 is the concentration of the solute in a saturated solution that 

is in equilibrium with the crystalline solid (range for 95% of drugs:   6.0–0.5);l logarithm of predicted binding constant to human serum albumin 

(range for 95% of drugs: −1.5 to 1.5); m logarithm of predicted brain/blood partition coefficient (range for 95% of drugs: −3.0 to 1.2); npredicted 

apparent Caco-2 cell membrane permeability in Boehringer-Ingelheim scale in [nm s -1 ] (range for 95% of drugs: < 25 poor, > 500 nm s-1  great); o 

number of likely metabolic reactions (range for 95% of drugs: 1–8); p predicted constants  IC50
pre  , was predicted from computed ∆∆Gcom using the 

regression Equation (B) shown in (Table 3) ; q human oral absorption (1=low, 2=medium, 3=high); rpercentage of human oral absorption in 

gastrointestinal tract (<25%=poor, >80%=high); * star in any column indicates that the property descriptor value of the compound falls outside the 

range of values for 95% of known drugs. 
 

The introduction of a set of filters and penalties such as 

Lipinski's rule of 5 allowed obtaining a reduced size of 

the library containing increased drug-like molecules43 

which led to selecting a smaller number of suitable 

PPZs that could be subjected to in silico screening. 

This focus allowed reducing the size of the initial 

library to 19,044 analogues, or 6% of its initial size.  
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1-21-7-2-4 0 493 732.3 247.2 1410.0 4 2 8.25 3.7 -6.0 140.5 -0.4 0.7 3 2.10 3 87 

2-12-7-12-4 0 488 770.8 284.9 1453.4 5 0 9.75 3.1 -5.1 126.4 -0.6 0.0 2 4.51 3 82 

2-20-29-7-4 0 490 713.9 263.9 1409.4 6 1.5 8.75 3.6 -5.8 161.4 -0.4 0.5 5 0.36 3 87 

4-1-7-9-4 0 480 715.7 286.0 1388.6 4 0 5.5 5.3 -6.9 530.6 0.2 1.0 4 1.01 3 93 

4-8-8-1-4 0 452 676.9 220.5 1282.0 2 0 4.75 5.1 -6.6 570.6 0.4 1.0 4 0.91 3 93 

4-9-6-8-4 0 480 709.6 263.4 1373.3 3 0 5.5 5.3 -6.9 606.9 0.4 1.0 5 0.70 3 95 

4-8-27-12-1 0 480 684.3 194.2 1315.0 4 0 6.25 4.3 -6.5 227.2 -0.1 0.6 4 4.46 3 94 

4-6-29-7-4 0 486 743.0 341.6 1457.8 7 0 8.25 3.6 -5.7 128.9 -0.7 0.3 5 1.13 3 86 

4-15-7-6-1 0 491 717.9 295.9 1404.0 6 0 7.75 3.7 -6.0 170.6 -0.5 0.4 4 6.98 3 89 

4-20-9-13-4 0 449 689.7 164.9 1307.4 4 2.5 6.5 3.6 -5.8 85.7 -0.6 0.7 6 7.81 3 82 

Rifampin 1 137.1 314 0.0 480 * 2 -3 4.5 −0.7 0 −0.8 −0.8 267.5 2 − 2 67 

Isoniazid 4 123.1 
* 

300 0.0 443 * 1 2 5 −0.6 −0.5 −0.8 −0.7 298.4 4 − 2 67 

Ethambutol 2 204.3 476 395.8 806 11 4 6.4 −0.2 0.6 −0.8 0.0 107.8 4 − 2 62 

Pyrazinamide 10 823.0 
* 

1090 * 850.0 * 2300 * 25 * 6 20.3 * 3.0 −3.1 −0.3 −2.7 38.2 11 * − 1 34 

Gatifloxacin 0 375.4 598 355.7 1093 2 1 6.8 0.5 −4.0 0 −0.6 17.0 1 − 2 52 

Moxifloxacin 0 401.4 642 395.6 1168 2 1 6.8 1.0 −4.7 0.2 −0.6 20.9 1 − 2 56 

Rifapentine 10 877.0 
* 

1025* 844.9* 2333* 24* 6 20.9 * 3.6 −2.2 −0.2 −1.5 224.0 13* − 1 51 

Bedaquiline 4 555.5 787 213.7 1532 9 1 3.8 7.6 * −6.9 1.7 0.4 1562.2 5 − 1 100 

Delamanid 2 534.5 796 284.4 1470 7 0 6.0 5.8 −7.6 1.0 −1.0 590.9 2 − 1 85 

Linezolid 0 337.4 555 337.2 996 2 1 8.7 0.6 −2.0 −0.7 −0.5 507.0 2 − 3 79 

Sutezolid 1 353.4 594 330.6 1047 2 1 7.5 1.3 −3.4 −0.4 −0.4 449.3 0 − 3 82 

Ofloxacin 1 361.4 581 337.0 1044 1 0 7.3 −0.4 −2.8 −0.5 −0.4 25.9 1 − 2 50 

Amikacin 14 585.6 739 350.3 1500 22* 17* 26.9* −7.9* −0.2 −2.1 −3.5 0 14* − 1 0 

Kanamycin 10 484.5 656 258.9 1291 17* 15* 22.7* −6.7* 2.0 −1.4 −3.1 0 12* − 1 0 
Imipenem 0 299.3 487 259.1 880 8 3 7.2 1.0 −1.8 −0.7 −1.4 35.0 3 − 3 61 
Amoxicillin 2 365.4 561 164.6 1033 6 4.25 8.0 −2.5 −0.8 −1.1 −1.5 1.0 5 − 1 12 

Clavulanate 0 199.2 397 184.6 630 4 2 6.5 −0.8 0.3 −1.3 −1.3 13.3 2 − 2 42 
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                      PPZ 2-20-29-7-4 (360 pM)                                                             PPZ 4-9-6-8-4 (700pM) 

       
                            PPZ 4-8-8-1-4 (910pM)                                                         PPZ 4-1-7-9-4 (1010 pM) 

Figure 5: (left), Close-up of the virtual response of the four new potential developed analogues PPZ 2-20-

29-7-4, PPZ 4-9-6-8-4, PPZ 4-8-8-1-4 and PPZ 4-1-7-9-4 in active site InhA and (right), their respective 

conolly surface. 
The binding site surface is colored according to residue hydrophobicity: red—hydrophobic, blue—hydrophilic, and white. 

 

Virtual screening of library of PPZs 

For a more detailed examination for molecular 

structures matching the 3D-QSAR PH4 Hypo1 
pharmacophore model of InhA inhibition the screening 

of 19044 analogues was performed.60 PPZs were 

mapped to at least 4 pharmacophore features, 50 of 

which mapped to at least 5 pharmacophore features. 

These best-fit analogues (PH4 hits) were then subjected 

to complexation QSAR model screening. The 

calculated GFE of InhA-PPZx complex formation, 

their components and predicted half-maximal 

inhibitory concentrations IC50pre calculated from 

correlation equation B (Table 3), are listed in Table 6. 

Analysis of Novel PPZs inhibitors 

Histograms of the frequency of occurrence of R1, R2, 
R3, R4 and R5 among the top 50 PH4 hits (Figure 5) 

were prepared in order to identify which substituents 

lead to new inhibitor candidates with the highest 

predicted potencies towards Mt InhA. The histograms 

show that the R1groups 1 and 4 were represented 

respectively with the highest frequency of occurrence 

(10) and (27) among the 50 hits; the R2 groups:  12 (5); 
22 (6); 20 (11); R3 groups :  7, 29, (6) and 21 (9); R4 

groups : 1 (5) and 2, 7 (4) and 12, 13 (6) and 8 (7);  R5 

groups : 1(12) and 2(7) and 3 (30). The top ten scoring 

virtual hits namely analogs are: 1-21-7-2-4 

(IC50
pre=2100 pM), 2-12-7-12-4 (4510 pM), 2-20-29-7-

4 (360 pM), 4-1-7-9-4 (1010 pM), 4-8-8-1-4 (910 pM), 

4-9-6-8-4 (700 pM), 4-8-27-12-1 (4460 pM), 4-6-29-7-

4 (1130 pM), 4-15-7-6-1(6980 pM) and 4-20-9-13-

4 (7810 pM). These analogues include mostly the 

following substituents at R1 position: 1, 2, 4; R2 

position : 21, 12, 20, 18, 9, 6, 15; R3 position : 7, 29, 8, 

6, 27, 7, 9; R4 groups : 2, 12, 7, 9, 1, 8, 6, 13; R5  
groups :  4, 1. The larger hydrophobic pocket due to its 

amino acid composition all R groups display 

preferences for shorter aliphatic building blocks as 

shown in Table 5.  

 

 
Figure 6: Molecular mechanics intermolecular interaction energy Eint breakdown to residue contributions, in 

[kcal.mol-1] shown for the four best designed novel PPZ analogs and PPZ1, most active ligand of training set. 
The color coding refers to ligands and is given in the legend 
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There is an overall increase in the binding affinity of 

InhA for substitutions in the R1 to R5 positions of 

PPZs as illustrated by the inhibitory potencies of the 

majority of the newly designed analogues. The best 

designed PPZ benzamide 2-20-29-7-4 displays a 
predicted minimum inhibitory concentration of 

IC50pre=360 pM which is more than 100-fold lower 

than that of the most active compound in the TS, PPZ1 

with IC50exp=160 nM (Figure 6). 

ADME Profiles of Designed PPZs 

Pharmacokinetic profile obtained of InhA inhibitors 

still requires increased research. Presented in Table 7, 

the ADME of our new analogs, were described earlier 

by the QikProp program44 taken from the method of 

Jorgensen45. The fundamental principles of this method 

are described previously24. Our best analogs are 

compared with that of drugs used on the market to treat 
tuberculosis disease (Table 7). 

 

DISCUSSION 

 

A training set of 12 PPZs and validation set of 3 PPZs 

(Table1) were selected from a heterogeneous   series of 

InhA inhibitors for which experimentally determined 

inhibitory activities were available from a single 

laboratory16. Both were obtained by synthesize from 

the 1-(9H-fluoren-9-yl)-piperazine. The first one is 

from the synthesis bearing modifications around the 
carbonyl hydrogen bond acceptor using 1-(9H-fluoren-

9-yl)-piperazine and the second group were from direct 

sulfonylation. The whole series was obtained by 

substitutions at five positions of the aromatic ring of 

the other side of the sulfonyl and carbonyl surrounded 

by hydrophobic residues constituted of residues 

constituted of residues Pro 99, Gly 104, Met 103, Tyr 

158, Phe 149 and Met 161, Met 98, Ala 198 of Genz-

10850 (PPZ1) as shown in Table1. Their experimental 

inhibitory concentrations IC50
exp16 cover a 

concentration range sufficiently wide to serve well for 

building of a reliable QSAR model of InhA inhibition. 
Accord to the PPZ8 According to the structures of 

PPZ8 and PPZ5 studied, the presence of the methyl 

group at the C2 position of the aryl moiety causes 

steric hindrance due to the restricted space in the cavity 

formed by Met103, Tyr158, and Met161 residues of 

MtInhA16. In order to identify structural modifications 

of the aromatic ring leading to increased binding 

affinity of PPZs to InhA of MTb we have carried out 

detailed analysis of interactions in a series of InhA-

PPZs complexes with help of the complexation QSAR 

model. The first step of this analysis aimed at obtaining 
insight into InhA active-site interactions by performing 

the interaction energy breakdown into contributions 

from individual residues filling the hydrophobic pocket 

displayed on Figure 3 for the most active inhibitor 

PPZ1, moderate active (PPZ5 and PPZ8) and the 

lowest (PPZ12) activity, Table 216. Figure 4 showed 

that there no too difference concerning the interaction 

Energy (IE) between the three classes of activity. To 

obtain the best analogs PPZ we proceed by a 

combinatory library. As the pocket containing the R1 

groups and formed by Met103, Tyr158, and Met161is 
too small we put their short substituents. We notice that 

the analogs dominated by small fragment like 

halogenure and hydroxyd have the most frequency of 

occurrence. The convenable size of the fragment 

chosed lead to obtain the best analogs considerably 

most act if than the most active of the training and the 
validation sets. The most four virtual active analogs 

were PPZ 2-20-29-7-4 (IC50
pre=360 pM), PPZ 4-9-6-8-

4(IC50
pre=700 pM), PPZ 4-8-8-1-4 (IC50

pre=910 pM) 

and PPZ 4-1-7-9-4 (IC50
pre=1010 pM) with favorable 

predicted pharmacokinetic profile than the older 

currently used drugs. We can suggest them for 

synthesis.  

 

CONCLUSION AND RECOMMANDATION 

 

In this work the crystallographic structure of the InhA-

PPZ1 (1P44) complex and the structural properties of 
the Piperazine derivatives identified by Mariane Rotta 

et al.16, as a potential antituberculosis agent and whose 

target is InhA enabled us to develop a QSAR 

complexation model capable of explaining more than 

92% of the variation in the experimental inhibitory 

activity of Piperazine derivatives by the Gibbs free 

energy of formation of the InhA-PPZx complex. 

Following this QSAR model, we obtained a 3D-QSAR 

PH4 pharmacophore model using a training set of 12 

PPZs and a validation set of 3 PPZs with known 

inhibitory activities16. The visual analysis and 
calculation of the interactions between InhA and PPZs 

in the active site of the enzyme guided us in the design 

of a virtual combinatorial library of new PPZ analogs 

with a substitution on the scaffold at the position R1 to 

R5 on the aromatic ring. The virtual library obtained 

was first focused by considering Lipinski's five rule 

and then screened by the 3D QSAR pharmacophore 

identified during chemical space exploration around 

R1to R5 positions novel PPZs analogsby the QSAR 

complexation modelwith predicted picomolar MtInhA 

inhibitory potencies PPZ 2-20-29-7-4 (IC50
pre= 

360 pM), PPZ 4-9-6-8-4(IC50
pre=700 pM), PPZ 4-8-8-

1-4 (IC50
pre=910 pM) and PPZ 4-1-7-9-4 (IC50

pre=1010 

pM) all display also favorable pharmacokinetic profiles 

compared to current antituberculotics. We believe that 

they are worth synthesizing and evaluating. 
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