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Abstract 
____________________________________________________________________________________________________ 
 
Aerogel-based biomaterials is an important subject in materials sciences due to 

their vast attention in different sectors. These materials possess unique properties 
that distinguish them such as low density. In the area of tissue engineering, there 
application has been documented in areas such as blood vessel, soft tissue, nerves, 
bone and cartilage.There are several steps involved in aerogel preparation. The first 
step involves the appropriate selection of a precursor material such as polymers, 
silica or carbon. Aerogels have a unique property which includes the composition 
of mesoporous solid colloids that possess a light weight and a porous frame work 
structure. Aerogels also possess unique extraordinary physicochemical 

properties.Tissue engineering is a broad term that encompasses on using 
biocompatible materials to repair and replace damaged tissues. Notwithstanding, its 
diverse applications over the years, tissue engineering have had persistent hurdles 
which include the need to develop new novel biomaterials This article seeks to 
review the properties of aerogel and their preparation processes. The review also 
documented the challenges from current studies and future prospects were also 
discussed. 
Keywords: Aerogel, biomaterials, biomedicine, material science, porosity. 

 

 

INTRODUCTION 
 

The significant attention aerogels have gained over the 

years especially in the field of biomaterials cannot be 

over emphasized1,2. They have a unique property which 
includes the composition of mesoporous solid colloids, 

which possess a lightweight and a porous frame work 

structure3. A definition given by Feng et al., defined an 

aerogel as a solid component that has a unique 

dispersion4. Aerogels are remarkable materials that 

possess extraordinary physicochemical properties5. 

Aerogel preparation involves several steps. They have 

diverse applications and ability to exist in different 

forms such as cylinders, spheres and monolithic 

shapes6,7. In the field of biomedicals, their application 

is widespread to other areas not limited to tissue 

engineering8,9.Tissue engineering is a broad term that 
encompasses on using biocompatible materials to 

repair and replace damaged tissues. Notwithstanding, 

its diverse applications over the years, tissue 

engineering have had persistent hurdles over the years 

which include the need to develop new novel 

biomaterials10-14. With these challenges in view, the 

promising avenue of aerogel-based biomaterials cannot 
be over-emphasized15. Some of the several reasons 

associated with the use of these materials include: its 

biocompatibility, biodegradability and mechanical 

strength16. Scientists have been able to incorporate the 

aerogel-based scaffolds in three-dimensional (3D) 

printing, thus enhancing its flexibility.  

Aerogel-based biomaterials and their unique 

properties 

Distinctive properties associated with aerogels include 

high porosity, low weight and surface area17-20. They 

help to increase their widespread applications in 

various fields. These exceptional qualities of the 
biomaterials to be easily handled and implemented in 

the human body is related to their low density and 
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weight21. Some of the techniques used in the 

determination of aerogels include: scanning electron 

microscopy (SEM), small-angle scattering (SAXS), 

nuclear magnetic resonance (NMR) and X-ray 

diffraction (XRD)22-26.  

Aerogel-based biomaterials and their preparation 

techniques 

Several key steps are involved in aerogel preparation. 

The first step involves the appropriate selection of a 

material such as polymers, silica or carbon27,28. These 

precursor materials have their own unique properties. 

The sol-gel process is the first fundamental method 

employed in aerogel synthesis29,30. To enhance the 

strength of aerogels, there is to deploy various cross-

linking strategies31,32. The production of nanofiber-

derived aerogels (PNAs) by Qian et al.33, was based on 

the high porosity and surface area. The effect of aging 

on the aerogel’s microstructure has been documented. 

According to Kawakami et al., he deployed the use of 
water vapor in optimizing the aging process34. The 

most prevalent methods among the afore-mentioned 

techniques are freeze-drying and scCO2 drying35-40. 

Table 1 summarizes the drying methods on aerogel 

characteristics, while Table 2 depicts the various 

strategies for aerogel preparation. Two unique 

characteristics mark out the supercritical drying 

technique. They include avoidance of structural 

collapse and mesopore shrinkage40-42.  

 

Table 1: Different characteristics of aerogels prepared by different drying techniques. 
Technique Aerogel Raw material(s) Characteristics Reference 

SCD SiO2 and 
carbon aerogels 

Tetra-ethoxy silane, ethanol, 
water 

Transparency, homogeneity, pore  
size (80 mm or less), ultra-low  

density, small mean particle size 

44,46 

SCD nanofibers Ammonium sulfate, CaCl2 33 nm and 23 nm pore size 47 

Freeze-drying Carbon 
aerogels 

Formaldehyde Density of 0.112 g/cm3 48 

UAFD Polyimide 
aerogels 

N-N-dimethylacetamide 
(DMAc) 

Heightened thermal insulation  
and increased hydrophobicity 

49 

SCD: Supercritical drying); UAFD: Ultrasound assisted freeze drying. 

 

Table 2: Applied strategies of aerogels in tissue engineering. 
Aerogel Applied strategy Synthesis 

technology 

Results Reference 

Photo-crosslink and 
methacrylate 

3D printing of 
scaffolds 

Wet chemical 
synthesis and self-

assembly. 

Supports mesenchymal  
osteoblast differentiation 

66 

Alginateaerogel 3D printing of 
scaffolds 

3D printing cell proliferation and migration  
are enhanced. 

67 

Nanofiber aerogel Bone scaffolds Freeze casting Healing was achieved in a cranial  
defect of size 8 mm 

68 

Mixture of gelatin 
and chitosan aerogel 

Dopamine release Covalent grafting Production of good mechanical  
properties 

69 

Nanofiber aerogel Typical release 
strategy 

Amination 
reactions 

Formation of new  
bone cells 

70 

 

Classification of aerogel-based biomaterials 

They are classified based on two distinct properties 

which include: constituent materials and chemical 

properties9. Nanomaterials is one of the materials used 
in biomedical application50-54.  

Organic aerogels-based biomaterials 

Unique characteristics associated with organic aerogels 

include: light weight, flexibility and biocompatibility 
55-58. Carbon based aerogels are constructed with the 

help of carbon-based nanomaterials. The materials 

exist in form of nano diamonds (NDs)59-62. Another 

component of the aerogel production are the organic 

polymer materials63-65. Cellulose has a well-known 

cellulose-based hydrogel derived from it66.  

Inorganic aerogel-based biomaterials 

The foundation of these biomaterials consists of 

inorganic materials like metal oxides63-65. The first 

synthesis of silicon aerogels was in the 19th century58. 

They are also used in industrial setting and in water 

purification65.  

 

Table 3: Current perspectives of aerogel applications. 
Tissue engineering 

application/direction 

Aerogel-based biomaterials Other added 

materials 

Application advantages Reference 

Bone/tissue engineering Scaffolds of nanowire origin Hydroxyapatite It enhances the growth and 
regeneration of bone cells 

76 

Nerve tissue 
engineering 

Conductive 
cellulose/polypyrrole 
composite aerogels 

Dodecyl-
benzenesulfonic acid 

It enhances the adhesion of 
PC 12 cells 

78 

Skin tissue engineering Jackfruit aerogel Derivatives of zinc It enhances the regeneration 
of infected skin wounds 

79 

Muscle tissue 
engineering 

Polydopamine aerogel Tannic acid It enhances the growth of 
myofibroblasts 

80 
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Hybridized aerogel-based biomaterials 

Distinct properties of aerogels are influenced by the 

selection between organic and inorganic types. They 

possess notable characteristics such as bio-

degradability, biocompatibility and light weight69,70. A 
significant milestone was achieved by Novak et al., 

when he prepared the first silica (SiO2) hybridized 

aerogel for specific applications71. There are various 

techniques deployed in the characterization of organic-

inorganic hybrid aerogels71,72. There are two main 

classes of organic-inorganic hybridized aerogels73,74. 

The choice of type I or type II hybridized aerogels 

depends on its application75. 

Aerogel-based strategies for tissue regeneration 

Properties such as biocompatibility, hydrophilicity and 

non-cytotoxicity are exhibited by aerogels. 

 

CONCLUSION  

 

The new characteristics of aerogels make them stand 

out as a unique material. There is need to pay critical 

attention on the synthesis protocols and porosity 

regulation of aerogels. Inherent properties of aerogels 

can be further explored by researchers in areas of 

aerogel-based biomaterials.  
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