

Available online at www.ujpronline.com Universal Journal of Pharmaceutical Research An International Peer Reviewed Journal

ISSN: 2831-5235 (Print); 2456-8058 (Electronic) Copyright©2018; The Author(s): This is an open-access article distributed under the terms of

the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

RESEARCH ARTICLE

WOUND DRESSINGS UPLOADED WITH MYRTLE BERRIES EXTRACT AND NIGELLA SATIVA HONEY

Zam Wissam^{1*}, Hammadi Maher²

¹Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous,

Syrian Arab Republic.

²Department of Analytical and Food Chemistry, Faculty of Pharmacy, Tartous University, Tartous, Syrian Arab Republic.

Article Info:

Abstract

Article History: Received: 1 February 2018 Reviewed: 13 March 2018 Accepted: 12 April 2018 Published: 15 May 2018

Cite this article:

Wissam Z, Maher H. Wound dressings uploaded with myrtle berries extract and *Nigella sativa* honey. Universal Journal of Pharmaceutical Research 2018; 3(2): 11-14. *https://doi.org/10.22270/ujpr.v3i2.132*

*Address for Correspondence:

Zam Wissam, Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syrian Arab Republic. Tel.: +963-932-724703, E-mail: w.zam@au.edu.sy **Objective:** Wound dressings are frequently developed by introducing new products to target different aspects of the wound healing process. Many medicated dressings incorporated with natural extracts and chemicals have been developed. Chronic wounds could be invaded by many bacteria and *Pseudomonas aeruginosa* and *Staphylococcus aureus* are the most common. *S. aureus* and *P. aeruginosa* are usually detected in the higher layer of wounds or in the deepest region of wound bed, respectively.

Methods: Starch based impregnated gauze containing either *N. sativa* honey, myrtle berries hydro-alcoholic extract or a combination were prepared. There efficacy against both *P. aeruginosa* and *S. aureus* isolated from chronic wounds.

Results: *N. sativa* honey mixture was the most potent against *P. aeruginosa* with an inhibition zone diameter of 18.1 ± 0.3 mm, while the myrtle berries hydro-alcoholic extract mixture was the most potent against *S. aureus* with an inhibition zone diameter of 18.4 ± 0.5 mm. The prepared impregnated gauzes deliver a moist environment that helps wounds epithelialize more rapidly.

Conclusion: In conclusion, honey and myrtle berries hydro-alcoholic extract provide antibacterial and anti-inflammatory properties that will accelerate the healing process of wounds.

Keywords: Myrtle berries hydro-alcoholic extract, *N. sativa* honey, *Pseudomonas aeruginosa, Staphylococcus aureus*, starch based impregnated gauzes.

INTRODUCTION

A wound is defined as a simple or severe break in an anatomical structure such as the skin and can outspread to other tissues¹. Infection occurs in wounds due to competition with the host natural immune system and causes a delay in wound healing. The most common causes of infection are Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pyogenes, and some Proteus, Clostridium, and Coliform species. The efficacy of topical solutions, creams or ointments for drug delivery to the wound is very low as they rapidly lose their rheological characteristics due to the absorption of fluids². Traditionally, wound dressings are used to protect the wound from contamination³, but they can be developed to deliver bioactive molecules such as antimicrobial drugs to wound sites. Wound dressings uploaded with natural products, including the β -glucans, aloe, essential oils, honey, cocoa, and oak bark extracts⁴. Various parts of Myrtle (Myrtus communis L.) such as berries, fruits and leaves have

been widely used as traditional medicine for the treatment of several diseases due to their antiinflammatory, antioxidant and antimicrobial properties^{5,6}. Many components have been extracted from this herb and are considered to be the main biologically active components including polyphenols, myrtucommulone, semimyrtucommulone, α -pinene, 1, 8-cineole, myrtenyl acetate, limonene, linalool and αterpinolene⁷. High antibacterial activity of ethanol, methanol, and ethyl acetate berry myrtle extracts was when tested against S. aureus, P. observed aeruginosa and Escherichia coli^{8,9}. Some results have indicated that phenolic compounds and tannins greatly contributed to the antibacterial efficacy^{10,11}. In folk medicine, a decoction of leaves and fruits is used externally for wound healing¹². Traditionally, honey has been considered to have therapeutic properties since ancient times¹³. Results of different researches had previously proved the efficacy of honey against different types of microbes¹⁴. Bacterial resistance is less likely to develop as a result of treatment with honey because of the composition of honey which contains a number of different components responsible for the antimicrobial efficacy¹⁵. This includes pH, sugar content, hydrogen peroxide levels and the presence of some phytochemicals, mainly phenolic compounds including phenolic acids and flavonoids¹⁶. Honey has also been proved to accelerate wound healing by offering antibacterial activity, maintaining a moist wound environment that promotes healing^{17,18}. Many researchers report that honey could be an effective dressing for the treatment of different skin infections resulting from burns and wounds^{19,20}.

In this study, the anti-bacterial effect of impregnated sterile gauzes containing myrtle berries extract and *N. sativa* honey was studied on both *P. aeruginosa* and *S. aureus*.

MATERIALS AND METHODS

Myrtle extracts preparation

Myrtle berries were collected from a mountainous region of Syria. Total 2 g of dried powders of myrtle berries were extracted by maceration in 100 ml of ethanol 50% for 2 hours²¹. The ethanol was evaporated using a rotary evaporator.

Starch based gel preparation

A starch based gel containing 20 g of starch, 20 ml of glycerol, and 100 ml of water was prepared first²². The solution was gently stirred until starch dissolved. It was then homogenized, heated for about 15 min at 80-85°C and finally cooled to room temperature. Three different mixtures were prepared using 10 ml of the starch based gel with 10 ml of *N. sativa* honey (purchased directly from beekeepers), 10 ml of myrtle extract or a combination of them in 1:1 ratio. *N. sativa* honey was used in this study as it was found to be more potent on *P. aeruginosa* and *S. aureus* than other types of honey^{23,24}.

Impregnated gauze preparation

Standard sterile gauze 3 inch by 3 inch was dipped into different starch based mixtures till saturation and the excess solution was extruded by applying pressure. The hardening of the gel on the gauze was accomplished by refrigeration then the prepared impregnated gauzes were placed in sterile envelopes.

Antibacterial efficacy

P. aeruginosa and *S. aureus* were isolated from chronic wounds and tested for their antibiotic sensitivity. Antimicrobial activity test was carried out using agar diffusion method on Muller Hinton Agar plates²⁵. Bacterial isolates were spread on plates, and then a hole was punched into plates with a diameter of 6 mm. One hundred micro liter of each mixture was introduced into the hole and the plates were incubated for 24 h at 37°C. The average of three cross sectional points of inhibition zone diameter was taken as the inhibition zone.

RESULTS AND DISCUSSION

Application of conventional antibiotics is becoming more difficult due to several problems especially antimicrobial resistance and side effects. This has reinforced the use of natural alternative agents to replace synthetic antimicrobials²⁶. Accordingly, extensive research has been carried out in order to assess the antimicrobial activity of the natural extracts and different types of honey which showed the ability to inhibit the growth of various pathogenic microorganisms²⁷.

Table	1:	Antibiotic	5	sen	si	tivities	of	Р.	aeruginosa
				•					

	isolate.	
Antibiotic	Inhibition zone	Result
name	diameter (mm)	
Levofloxacin	29	Sensitive
Cefipime	26	Sensitive
Ceftazidime	20	Sensitive
Imipenem	20	Sensitive
Gentamycin	15	Intermediate
Doxycycline	15	Intermediate
Ceftriaxone	10	Resistant
Amoxicillin+	No inhibition	Resistant
Clavulanic acid	zone	

The antibiotic sensitivities of both *P. aeruginosa* and *S. aureus* isolated from chronic wounds are presented in Table 1 and Table 2. Table 3 shows the results of inhibition zone diameter of different prepared starch based mixtures on under-study microorganisms. Accordingly, the *N. sativa* honey mixture was the most potent against *P. aeruginosa* with an inhibition zone diameter of 18.1 ± 0.3 mm similar to that of imipenem and ceftazidime, while the myrtle berries hydro-alcoholic extract mixture was the most potent against *S. aureus* with an inhibition zone diameter of 18.4 ± 0.5 mm similar to that of tetracycline and chloramphenicol.

Table 2	: Antibiotic	sensitivities	of S.	aureus	isolate.

Antibiotic name	Inhibition zone	Result	
	diameter (mm)		
Imipenem	31	Sensitive	
Levofloxacin	30	Sensitive	
Erythromycin	23	Sensitive	
Meropenem	22	Sensitive	
Tetracycline	20	Sensitive	
Chloramphenicol	19	Intermediate	
Cefotaxime	13	Resistant	
Linezolid	11	Resistant	
Cefazolin	10	Resistant	
Cefaclor	No inhibition zone	Resistant	
Ceftriaxone	No inhibition zone	Resistant	
Cefdinir	No inhibition zone	Resistant	

The positive and potent effect of myrtle extract on *S. aureus* in this study is consistent with the results obtained by Taheri *et al.*, who had previously found that the concentration of 80 mg/ml of myrtle hydroalcoholic extract showed the greatest effect on the *S. aureus* bacterium with an inhibition zone diameter of 20.4 ± 0.3 mm. Same results were obtained by Salvagnini who studied the effect of the oil and ethanolic extact of myrtle on different strains and reported that the ethanolic extract of myrtle has a positive effect on *S. aureus* with 12 mm inhibition zone^{28,29}. Ghlamhsynyan Najjar *et al.*, acknowledged that the activity of myrtle extract on *S. aureus* strain is partly due to the stimulation of free radicals³⁰. The efficacy of honey against different types of microbes has been previously proved in different researches^{23,24,31} and bacterial resistance¹⁵. Results of different researchers proved that honey was more potent against *P. aeruginosa* than *S. aureus* which is consistent with current results. Boateng and Nso Diunase found that the zone of inhibition values for *P. aeruginosa* ranged from 26.3±0.6 mm for Manuka honey to 34±2.0 mm for Cameroon standard honey, whilst the zones of inhibition against *S. aureus* was not more than 18.7±1.2 mm for Manuka honey³².

As shown in Table 3, the combination between *N*. *sativa* honey and myrtle berries extract was effective

against both P. aeruginosa and S. aureus with a diameter zone of inhibition of 13.06±0.4 mm and 15.6±0.2 mm, respectively. Dressings are a part of this process and are designed to be in contact with the wound, help in faster re-epithelialization, collagen synthesis and promote angiogenesis³³. Bioactive wound dressings incorporated with antimicrobials are one of the most important modern wound dressings for process³⁴. Commercially healing available antimicrobial dressings include honey-impregnated dressings, iodine-impregnated dressings, silverimpregnated dressings³⁵.

Table 3: Sensitivity of J	P. aeruginosa and S.	aureus isolates against differen	t mixtures.
	0	0	

Mixture	Inhibition zone diameter (mm		
-	P. aeruginosa	S. aureus	
N. sativa honey	18.1±0.3	11.2±0.3	
Myrtle extract	15.3±0.2	18.4 ± 0.5	
Myrtle extract with honey 1:1	13.6±0.4	15.6±0.2	

Figure 1: Impregnated gauze.

Misirlioglu et al., used honey-impregnated gauze for the treatment of a split-thickness skin graft donor site. The gauze showed a lower sense of pain and faster epithelialization time than paraffin gauzes and salinesoaked gauzes³⁶. In the UK, dressings impregnated with Manuka honey were successfully used in the wound care clinic³⁷. Subrahmanyam et al., has shown in a randomized clinical study that residual scars decrease in patients treated with honey-impregnated gauze compared with those treated with amniotic membrane³⁸. It was also proved that wounds dressed with honey-impregnated gauze showed earlier healing compared with silver sulfadiazene dressing in burn patients³⁹. They also deliver active compounds with anti-inflammatory and antimicrobial properties; and play an active role in the wound healing process.

CONCLUSIONS

Simple woven gauze although commonly used, they are known to be painful to remove, destructive to newly formed granulation tissue and provoke infection by leaving some fibers behind in the wound bed. A wide range of more appropriate dressings ensuring appropriate healing process has been available for a number of years such as medicated dressings. Plant extracts with antimicrobial and healing properties in addition were known to ancient cultures such as silver, honey and iodine are used for the preparation of medicated dressings. Although the perfect dressing is yet to be developed, wound dressings have evolved and further researches are still to be done.

ACKNOWLEDGEMENTS

The authors extend their thanks and appreciation to the Al-Andalus University for Medical Sciences, to provide necessary facilities for this work.

AUTHOR'S CONTRIBUTION

Wissam Z: formal analysis, writing, review. **Maher H:** investigation, data curation, conceptualization. All authors revised the article and approved the final version.

DATA AVAILABILITY

Data will be made available on request.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

1. Velnar T, Bailey T, Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J Int Med Res 2009; 37(5):1528–1542. https://doi.org/10.1177/147323000903700531

a. Impregnated gauze with 10 ml *N. sativa* honey. **b.** Impregnated gauze with 10 ml myrtle berries hydro-alcoholic extract. **c.** Impregnated gauze with 10 ml *N. sativa* honey and myrtle berries hydro-alcoholic extract mixture (1:1).

- 2. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14(2):244–269. https://doi.org/10.1128/CMR.14.2.244-269.2001
- 3. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8):2892–2923. https://doi.org/10.1002/jps.21210
- 4. Davis SC, Perez R. Cosmeceuticals and natural products: wound healing. Clin Dermatol 2009; 27(5):502–506. https://doi.org/10.1016/j.clindermatol.2009.05.015
- Alipour G, Dashti S, Hosseinzadeh H. Review of pharmacological effects of *Myrtus communis* L. and its active constituents. Phytother Res 2014; 28:1125–1136. https://doi.org/10.1002/ptr.5122
- Hosseinzadeh H, Khoshdel M, Ghorbani M. Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of *Myrtus communis* L aerial parts in mice. J Acupunct Meridian Stud 2011; 4:242–247. PMID: 22946016
- Chryssavgi G, Vassiliki P, Athanasios M, Kibouris T, Michael K. Essential oil composition of *Pistacia lentiscus* L. and *Myrtus communis* L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem 2008; 107: 1120-1130.https://doi.org/10.1016/j.foodchem.2007.09.036
- 8. Sobel JD. Bacterial vaginosis. Ann Rev Med 2000; 51:349-56.
- Mert T, Fafal T, Kivçak B, Öztürk HT. Antimicrobial and cytotoxic activities of *Myrtus communis* L. J Fac Pharm Ankara 2008; 37(3):191-199.
- 10. Shan B, Cai YZ, Brooks JD, Corke H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int J Food Microbiol 2007; 117:112-119. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003
- Akiyama H, Fijii K, Yamasaki O, Oono T, Iwatsuki K. Antibacterial action of several tannins against *Staphylococcus aureus*. J Antimicrob Chemother 2001; 48:487-491. https://doi.org/10.1093/jac/48.4.487
- Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E. Antioxidant activities and fatty acid composition of wild grown myrtle (*Myrtus communis* L.) fruits. Pharmacogn Mag 2010; 6:9-12. https://doi.org/10.4103/0973-1296.59960
- 13. Molan PC. The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World 1992; 73:5-28. https://doi.org/10.1080/0005772X.1992.11099109
- 14. Abd-El Aal AM, El-Hadidy MR, El-Mashad NB, El-Sebaie AH. Antimicrobial effect of bee honey in comparison to antibiotics of organisms isolated from infected burns. Ann. Burns Fire Disast 2007; 20:83–88. PMID: 21991075
- Carnwath R, Graham EM, Reynolds K, Pollock PJ. The antimicrobial activity of honey against common equine wound bacterial isolates. Vet J 2014; 199:110. https://doi.org/10.1016/j.tvjl.2013.07.003
- Mårghita LA, Dezmirean D, Adela M, Otilia B, Laura L, Bogdanov S. Physicochemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry. 2009; 112(4):863-867.
- https://doi.org/10.1016/j.foodchem.2008.06.055 17. Van den Berg AJ, Van den Worm E, Van Ufford HC, Halkes
- 3. Wan den Berg AJ, Van den wohn E, Van Onou He, Harkes SB, Hoekstra MJ, Beukelman CJ. An *in vitro* examination of the antioxidant and anti-inflammatory properties of buckwheat honey. J Wound Care 2008; 17:172-178. https://doi.org/10.1080/21691401.2017.1337022
- Lusby PE, Coombes AL, Wilkinson JM. Bactericidal activity of different honeys against pathogenic bacteria. Arch Med Res 2005; 36:464-467.https://doi.org/10.1016/j.arcmed.2005.03.038
- Cooper RA, Molan PC, Harding KG. Honey and gram positive cocci of clinical significance in wounds. J Appl Microbiol 2002; 93:857-863. https://doi.org/10.1046/j.1365-2672.2002.01761.x
- 20. Cooper RA, Halas E, Molan PC. The efficacy of honey in inhibiting strains of *Pseudomonas aeruginosa* from infected burns. J Burn Care Rehabil 2002; 23:366-370. https://doi.org/10.1097/00004630-200211000-00002

- Aksay S. Total Phenolic Content and Antioxidant Properties of Various Extracts of Myrtle (*Myrtus communis* L.) Berries. Çukurova J Agric Food Sci 2016; 31(2):43-50.
- 22. Famá L, Rojas AM, Goyanes S, Gerschenson L. Mechanical properties of tapioca-starch edible films containing sorbates. LWT 2004; 38:631-639.
 - https://doi.org/10.1016/j.lwt.2004.07.024
- Zam W, Harfouch R, Bittar S, Sayegh M. Antibacterial activity of various Syrian honey types against *Pseudomonas aueruginosa*. Research J Pharmacog Phytochem 2017; 9(2):73-76. https://doi.org/10.5958/0975-4385.2017.00013.9
- 24. Zam W, Harfouch R, Al Dwiri M, Khwanda R. Anti-Staphylococcus aureus efficacy of six natural honey samples originated from Syria. Research J Pharmacog Phytochemistry, In Press. https://doi.org/10.5958/0975-4385.2018.00004.3
- 25. Shanker K, Krishna Mohan G, Bhagavan Raju M, Divya L, Sanjay B. Efficacy of leaves extract of *Acacia nilotica* against *Pseudomonas aeruginosa* with reference to Disc diffusion method. Res J Pharmacogand Phytochem 2014; 6(2):96-98.
- 26. Gortzi O, Lalas S, Chinou I, Tsaknis J. Re-evaluation of antimicrobial and antioxidant activity of *Thymus* spp. extracts before and after encapsulation in liposomes. J Food Protect 2006; 69:2998–3000. https://doi.org/10.4315/0362-028X-69.12.2998
- 27. Ayatollahi-Moosavi SA, Abdollahi H, Kazemipour N. Study of anti-dermatophyte effect of ten herbal methanolic extract. J Kerman Med Univ Sci 1996; 3(3):115–22. https://doi.org/10.1186/1472-6882-14-29
- Taheri A, Seyfan A, Jalalinezhad S, Nasery F. Antibacterial Effect of *M. communis* hydroalcoholic extract on pathogenic bacteria. Zahedan J Res Med Sci 2013; 15(6):19-24.
- 29. Salvagnini LE, Oliveira JRS, Dos-Santos LE, et al. Brazilian J Pharmacognosy 2008; 18(2):241-244.
- 30. Gholamhoseinian-Najar A, Mansouri S, Rahighi S. Effect of sub-inhibitory concentrations of *Myrtus communis* leave extracts on the induction of free radicals in *Staphylococcus aureus*; A possible mechanism for the antibacterial action. Asian J Plant Sci 2009; 8(8):551-556. https://doi.org/10.3923/ajps.2009.551.556
- Abd-ElAal AM, El-Hadidy MR, El-Mashad NB, El-Sebaie AH. Antimicrobial effect of bee honey in comparison to antibiotics of organisms isolated from infected burns. Ann Burns Fire Disasters 2007; 20:83–88.PMID: 21991075
- 32. Boateng J, Nso Diunase K. Comparing the antibacterial and functional properties of Cameroonian and Manuka honeys for potential wound healing-have we come full cycle in dealing with antibiotic resistance? Molecules 2015; 20:16068-16084. https://doi.org/10.3390/molecules200916068
- 33. Sarabahi S. Recent advances in topical wound care. Indian J Plast Surg 2012; 45(2):379-87. https://doi.org/10.4103/0970-0358.101321
- 34. Liesenfeld B, Moore D, Mikhaylova A, *et al.* Antimicrobial wound dressings- mechanism and function. In: Symposium on advanced wound care; 2009.
- 35. Dumville JC, O'Meara S, Deshpande S, Speak K. Alginate dressings for healing diabetic foot ulcers. Cochrane database of systematic review 2013; 6.
- 36. Misirlioglu A, Eroglu S, Karacaoglan N, Akan M. Use of honey as an adjunct in the healing of split thickness skin graft donor site. Dermatol Surg 2003; 29:168–172. https://doi.org/10.1046/j.1524-4725.2003.29043.x
- 37. Visavadia BG, Honeysett J, Danford MH. Manuka honey dressing: an effective treatment for chronic wound infections. Br J Oral Maxillofac Surg 2008; 46(1):55–56. https://doi.org/10.1016/j.bjoms.2006.09.013
- Subrahmanyam M. Honey-impregnated gauze versus amniotic membrane in the treatment of burns. Burns 1994; 20(4):331– 333. https://doi.org/10.1016/0305-4179(94)90061-2
- 39. Baghel PS, Shukla S, Mathur RK, Randa R. A comparative study to evaluate the effect of honey dressing and silver sulfadiazene dressing on wound healing in burn patients. Indian J Plast Surg 2009; 42(2):176–181. https://doi.org/10.4103/0970-0358.59276