

Available online at www.ujpronline.com Universal Journal of Pharmaceutical Research An International Peer Reviewed Journal ISSN: 2831-5235 (Print); 2456-8058 (Electronic)

Copyright©2018; The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

REVIEW ARTICLE

EpCAM- AN OLD CANCER ANTIGEN, TURNED ONCOGENIC RECEPTOR AND ITS TARGETING IMMUNOTHERAPY

George Zhu

Institute of Oncology, Tehran University of Medical Sciences, Tehran, Iran.

Article Info:

Abstract

Received: 4 February 2018 Reviewed: 11 March 2018 Accepted: 14 April 2018 Published: 15 May 2018

Article History:

Cite this article:

Zhu G. EpCAM- an old cancer antigen, turned oncogenic receptor and its targeting immunotherapy. Universal Journal of Pharmaceutical Research 2018; 3(2): 41-46. https://doi.org/10.22270/ujpr.v3i2.140

*Address for Correspondence:

George Zhu, Institute of Oncology, Tehran University of Medical Sciences, Tehran, Iran. E-mail: *sansan4240732@163.com*

INTRODUCTION

In a series of long list of oncogenic receptors which discriminated tumorigenic in partial origin of tumors from receptors in normal health people and then better to potential targeting therapy benefits are presented in clear in previous references (Table 1)¹⁻⁶. Because It is no need to targeting receptors in normal condition, actually, targeting therapy now is shift mainly toward oncogenic receptors in tumours in tumor hospitals, even if we won't citing in literature⁷. EpCAM molecule a novel oncogenic receptor is shift toward new member family and targeting its antibodies³⁴. In this article recent advances on EpCAM in this field are deliberated. The epithelial cell adhesion molecule [EpCAM] was originally identified as a tumor associated antigen in discovery in 1970s³⁶, also known as cluster of differentiation 326 (CD326), and tumorassociated calcium signal transducer 1 (TACSTD1)³⁷. EpCAM is a type I transmembrane protein of 314 amino acids (aa) with apparent molecular weight of 40KD. The extracellular domain (EpEX) contain epidermal growth factor-like domain, a thyroglobin (TY) repeat domain, tansmembrane domain (TM) and a short 26-amino acid intracellular domain EpICD (Figure 1)³⁴⁻³⁷. EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity³⁴. EpCAM

survival, anti-apoptosis and proliferation, and malignant initiation and progression, three distinct pathway are illustrated: EpCAM/E-cadherin-catenin-actin cytoskeleton, EpCAM/wint-catenin signaling and its major EpCAM/nuclear signaling presented by Maetzel D in 2009 and Munz M in 2004. Moreover, more accumulated data are needed in detail mechanism. The data may provide its cancer biology and clinical targeting therapy benefits. **Keywords**: EpCAM, nuclear signaling, structure, target therapy.

EpCAM is a cell adhesion molecule. Its structure, its expression and the oncogenic

potential, and its signaling network and target therapy were in concise reviewed. In

recent advances, in addition to PI3K/akt and Raf/MAPK pathway involving in cell

cleavage is dependent on cell-to-cell contact. Thus, EpCAM as an oncogenic signaling protein engaged in cell adhesion and nuclear signaling³⁷⁻³⁸.

EpCAM expression, a dual player

EpCAM is expressed by the epithelium of health simple, pseudo-stratified individuals (all and transitional epithelia), except by squamous epithelium, and some specific epithelial cell types, such as hepatocytes and keratinocytes³⁹. EpCAM is a membrane protein with proto-oncogenic properties that is expressed in most human carcinomas, EpCAM is over expressed to varying degrees⁴⁰. These include the majority of adenocarcinomas including pancreatic adenocarcinoma, cholangiocarcinoma, node-positive breast cancer, epithelial ovarian cancer, lung cancer, colon carcinoma, prostate cancer, gastric cancer, hepatic carcinoma and squamous cell head and neck cancer⁴¹⁻⁴³. Recently, EpCAM has been identified as an additional marker for cancer-initiating stem cells⁴⁴⁻⁴⁶. The oncogenic potential of EpCAM or EpICD was demonstrated in a mouse xenograft model, in which HEK 293 cells stably expressing EpCAM or EpICD produced nearly equivalent large tumours, whereas control cells only formed a small tumour in a single case³⁸. EpCAM expressing pancreatic cancer stem cells showed a 100-fold enhanced tumorigenic potential compared with EpCAM-negative pancreatic cancer stem cells47,48. Similarly, in vivo evaluation of tumorigenicity in hepatocellular carcinoma cell lines, using immune deficient NOG mice, a smaller number of EpCAM⁺ cells (minimum 100) than EpCAM- cells are able to tumor formation. The introduction of exogenous EpCAM into EpCAM⁺ clones,but not into EpCAM- clones, markedly enhanced their tumorforming ability⁴⁵. Also, EpCAM-positive hepatocellular carcinoma stem cells could efficiently initiate tumours in SCID mice⁴⁶. Very recent, EpCAM-proliferating ductal cells (PDC) give rise to hepatocellular carcinoma (HCC) in the inflamed liver⁴⁸, which provide direct experimental evidence that EpCAM expressing PDC could be a cellular origin of HCC, suggesting the existence of stem/progenitor-derived hepatocarcinogenesis. For breast cancer stem cells, the ability to form tumours in SCID mice was for EpCAM⁺ cells 50-fold greater compared with the unfractioned tumour cells⁴⁷. Therefore, although EpCAM- and EpCAM⁺ cancer stem cells were able to form tumours, 10-fold less EpCAM⁺ cells than EpCAM- cells were able to induce tumours. Indeed, EpCAM over expression is associated with decreased overall survival of patients with a broad variety of carcinoma^{42,47}. In contrast to its promoting role regarding tumour formation, high EpCAM expression only in two tumour types (renal clear cell carcinoma and thyroid carcinoma) has been consistently associated with improved patient survival^{47,49}.

able 1: Receptors with oncogenic potential associated with tumours(also receptor-mediated tumorigenesis).	
Growth factors receptors:	Oncogenic receptor EGFRvIII (GB, MLC, SCC ⁸⁻¹¹ , Oncogenic receptor MUC1 ¹² or MUC4 ¹² , Neu oncogenic receptor (breast cancer) ¹³ ; Oncogenic receptor IGF-1R ¹⁴ ; Oncogenic B receptor (HCD, CLL) ¹⁴ and other VEGFR2(colorectal cancer, glioma) ²⁸²⁹
Cytokine receptors	Oncogenic growth hormone receptor (gigantism, acromegaly) ¹⁵ ; GHRH/GHRHR
	oncogenic signaling (pituitary tumors); Oncogenic EPOR(PFCP) ¹⁶ , oncogenic EPOR-
	IGH/IGK fusion (BCP-ALL) ¹⁷ ; Oncogenic CSF3R (CNL or aCML) ¹⁸ ; IL-2-BCM
	fusion (T cell lymphoma); IL-3-IgH oncogenic fusion (ALL); IL-11/IL-11
	receptor (gp130 Y757F/Y757F) pro-oncogenic signaling (gastric tumor in mice) ^{19,20} ;
	IL-21R-BCL6 fusion (DLBCL, lymphoma cell line; Oncogenic TSHR (thyroid adenoma)
Steroid receptors	Oncogenic thyroid hormone receptor (TR) (PTC) ²¹ ,oncogenic THR1/BTR fusion (breast cancer cell line; oncogenic receptor pml/RARa (APL) ^{22,23} ; Oncogenic receptor AR variants (Pca) ²⁴⁻²⁵ ; ER pro-neoplastic signaling ²⁶⁻²⁷ , neoplastic ESR1-CCDC170 fusion (also oncogenic receptor ERalpha fusion) (breast cancer) ^{7,28} ;GRβ aberrant signaling (Cushing's disease, erythrocytosis, GR ⁺ breast cancer, Nelson's syndrome) ²⁹⁻³¹ ; FSH/FSH receptor oncogenic signaling (preneoplastic ovarian surface epithelial cells)

Figure 1: EpCAM structure³⁷

Signal transduction by EpCAM oncogenic receptor and its target pathway

Several biological function of EpCAM has been described. EpCAM is a cell adhesion molecule, its action was invented in fact, is not limited on adhesion between cell and cell and also can activate intracellular MAPK and PI3K/Akt signal to cause tumor cell proliferation invasion and metastasis etc. biological action (Figure 2, George Zhu, 1991; Hu *et al.*, ¹) Recent advances further uncovers a highlight of new data in its distinct signal pathway.

Figure 2: A Scheme of oncogenic receptor (or receptor) mediated multiple signal transduction. (Here, nuclear regulators include transcriptional factors such as Jun/AP-1: Fos, NF-KB,myc, p53 and RB so on) [Data from George Zhu¹, 1991; Science, 2002 (unpublished data)]

EpCAM/E-cadherin-catenin-actin cytoskeleton (E-cadherin-mediated adhesion)

Adhesion molecules are known to play an important role in definiting cell fate, differentiation and other biological characteristics⁵⁰. EpCAM is a Ca²⁺independent homotypic intercellular adhesion molecule³⁵, thereby preventing cell scattering and likely to play a role in inhibition of invasion⁵¹. Many studies have demonstrated that cadherin colocalized with EpCAM at the basolateral membrane in epithelial cells decrease adhesions mediated by E-cadherin, a family of Ca²⁺-dependent homophilic cell-to-cell adhesion molecule. In epithelia cadherins are crucial for the establishment and maintenance of epithelial cell polarity, morphogenesis of epithelial tissues and regulation of cell proliferation and apoptosis⁵⁰.

Furthermore the adhesion function of E-cadherin depends on their association with regulatory proteins such as alpha- and beta-catenin^{50,52}. Catenins link cadherins with the actin cytoskeleton and can also form complexes with other epidermal growth factor receptor (EGFR) protein^{52,53}. EpCAM is able to abrogate Ecadherin- mediated cell-cell adhesion by disrupting the link between alpha-catenin and F-actin thereby loosening cell-cell adhesion and to rearrange the cytoskeleton of the cell³⁹. This negative effect of EpCAM expression on cadherin-mediated adhesion may explain the association of EpCAM expression with invasion and metastasis in epithelial carcinoma⁴¹. EpCAM SiRNA treatment increased the cytoskeletonanchored fractions of E-cadherin alpha-catenin and beta-catenin, and then markedly decreased cell migration and cell invasion in the breast cancer cell

line MDA-MB-231 *in-vitro*⁴¹, which implicated that EpCAM as a regulator of cell adhesion is a potential novel target for breast cancer therapy.

EpCAM/wnt-beta-catenin signaling

Wnt proteins are a family of highly conserved signaling molecules that regulate cell-to-cell interaction during embryogenesis^{41,54}. Wnt binds to receptors of the Frizzled family on the surface. Through several cytoplasmic relay components, the signal is transduced to beta-catenin, which accumulates initially in the cytoplasm, and then enters the nucleus where it binds a lymphoid enhancer factor/T-cell factor transcriptional factor. The beta-catenin and lymphoid enhancer factor/T-cell factor complexes activate the expression of many target genes such as c-myc, VEGF and others, are known to be associated with tumor development⁵⁴. It has been demonstrated that EpCAM silencing in breast cancer cells decreased the availability of betacatenin for the wnt pathway and then silencing the activation of its target genes⁴¹. This notion is also supported by Yamashita in patients with hepatocellular carcinoma and Kimura⁴⁵⁻⁴⁶ in hepatocellular carcinoma cell lines. Their experiments uncovered that EpCAMassociated tumorigenicity in PLC/PRF/5 cells might be mediated by EpCAM-independent signaling due to the immunostaining failed to detect EpICD and EpCAM molecules in the nuclei of any cell clones from the PLC/PRF/5 cell lines. Moreover, the hepatic stem cell marker EpCAM knockdown in EpCAM⁺ cells reduces their colony-forming ability suggesting an important role for EpCAM in the EpCAM⁺ cells and regardless of the exogenous expreasion of EpCAM, EpCAM⁺ clones still had higher expression of c-myc, than the EpCAMover expressing EpCAM- clones. Therefore signals through EpCAM induce Wnt/beta-catenin activation might be involved to another different signaling pathway in tumorigenesis under certain condition⁴⁵⁻⁴⁶.

EpCAM nuclear signaling

A highlight of new data presented by M. Munz that unravelled the entire pathway of EpCAM signalling from the cell membrane into nucleus⁵⁵. EpCAM was identified as a signal transducer³⁸: regulated transmembrane proteolysis by tumor necrosis factoralpha-converting enzyme (TACE) cleaves EpEX and EpICD is cleaved by presenilin-2. Upon cleavage the extracellular domain EpEX is release as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and enter the nucleus.

EpICD associates with the adaptor protein FHL2 (four and a half LIM domain protein 2, beta-catenin and the transcription factor Lef-1. This transcription complex binds the DNA at the lef-1 consensus sites inducing target genes c-myc and cyclin A and E expression³⁸, and drives cell proliferation. This notion is supported by the EpCAM found in nuclei of colon carcinoma but not of normal tissue³⁸, and HCT (colon) and MCF-7 (breast) carcinoma cells³⁴. In addition, analysis for concomitant presence of claudin 7, Co-029, CD44V6 and EpCAM expression in the presence of all four molecules in a complex formation was initially found in colorectal cancer (CRR) and has been shown to facilitate metastasis⁵⁶.

Others, epithelial-specific Ets-1 and Sp1 play an active role in EpCAM promoter regulation³⁷, while transcription factor nuclear factor-kappa B (NF-KB) and p53 have been described as transcriptional repressor of EpCAM⁴⁷. TACE-dependent EGFR axis⁵⁷, Claudin-7 and claudin-1 trafficked into lysosomes⁵⁸ and presenillins mediate PI3K/akt and ERK activation via select signaling receptors⁵⁹, which present a highlight mechanism in cancer. The emerging function of EpCAM in cell proliferation, migration and possibly cancer initiation broadens the interest to use EpCAM as an immune target, antibody-based clinical trials and in 2009, the European Medicines Agency approved the use of tri functional bi specific antibody Catumaxomab, which binds to EpCAM oncogenic receptor and enhances the immunological response against EpCAM-positive cells in malignant ascites⁴³. Effects of monoclonal antibody immunotherapy was initially trials on patients with gastrointestinal adenocarcinoma⁶⁰, three of 20 patients with metastasis of gastrointestinal malignancies have no detectable disease for 10,13 and 22 months due to the treatment with an anti-colorectal cancer mouse monoclonal antibody 1083-17-1A of the IgG2a immunotherapy. In 1989-91, Zhu¹ is the first to conduct that targeting therapy is shift toward oncogenic receptor [also surface-to-nucleus molecular missile therapy at that period, Zhu, 1980s^{34,61}. In 1994, mAb17-1A (later named edrecolomab) was also the first to show clinical efficacy in a human cancer indication in terms of prolonged overall survival⁶². Now, several anti-EpCAM therapeutic antibodies have been developed (edrecolomab, ING-1, 3622W94, adecatumumab⁶³. The most prominent example is adecatumumab (MT201, a fully human IgG1 antibody that target oncogenic EpCAM, which was well tolerated by patients with hormone-refractory prostate cancer and in patients with rising prostate specific antigen (PSA) levels after radical prostatectomy⁴³. It is at present reaching phase III trial⁶⁴. In preclinical study, moreover, high doses of chiHEA125-Ama (100 µg/Kg with respect to alphaamanitin) administered 1 week apart, lead to complete tumor regression in 9 of 10 (90%) mice, suggesting that anti-EpCAM antibody conjugates with alphaamanitin have the potential to be highly effective therapeutic agents for pancreatic carcinoma and various EpCAM-expressing malignancies. Targeting EpCAM oncogenic receptor might be a promising approach to stop tumor initiation, invasion and progression.

ACKNOWLEDGEMENTS

We wish to convey our special thanks to Prof. Yosef Yarden to review this manuscript in Weizmann Institute of Science, Israel.We wish to thank Prof. T. Taniguchi in University of Tokyo in Japan, Nobel Laureates Prof. Ferid Murad in University of Texas Health Center in USA and UNESCO Science Laureates Prof. Atta-Ur-Rahman in international center for chemical and biological sciences, University of Karachi in Pakistan for their valuable help.

AUTHOR'S CONTRIBUTION

Zhu G: Writing original draft, review, methodology, data curation, literature survey, editing.

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

- Zhu G. Oncogenic receptor hypothesis (1989-91). Voice of America(VOA) 1992;12:31
- https://doi.org/10.19080/JETR.2019.04.555643
 Green S, Chambon P. Carcinogenesis: A superfamily of potentially oncogenic hormone receptors. Nature 1986; 324:615-617. https://doi.org/10.1038/324615a0
- 3. Zhu G, Musumeci F, Byrne P. Induction of thyroid neoplasm following plant medicine marine algae (sargassum: A rare case and literature. Curr Pharm Biotechnol 2013; 14:859-863.
- https://doi.org/10.2174/13892010156661401131009464. Singh RR, Kumar R. Steroid hormone receptor signaling in
- Singir KK, Kunar K. Steroid normone receptor signating in tumorigenesis. J Cell Biochem. 2005; 96:490-505.
- Robinson R. Tumor cells share oncogenic receptors. J Cell Biol 2008; 181:570. https://doi.org/10.1083/jcb.1814rr3
- Neil JC, Fulton R, McFarlane R, Rigby M, Stewart M, Terry A, et al. Receptor-mediated leukemogenesis: hypothesis revisted. Br J Cancer Suppl 1988; 9:76-79. PMID: 2855466
- Zhu G, Saboor-Yaraghi AA, Yarden Y, Santos J, Neil JC. Down regulating oncogenic receptor: From bench to clinic. Hematol Med Oncol 2016;(1):30-40 https://doi.org/10.1016/j.canlet.2020.01.027
- Al-Nedawi K,Meehan B,Micallef J, *et al.* Intracellular transfer of the oncogenic receptor EGFRv III by microvesicles derived from tumor cells. Nat Cell Biol 2008; 10:619-24. https://doi.org/10.1038/ncb1725
- Miltra S, Han S, Soderstram K, Wong A. Preferential expression of an oncogenic receptor in brain tumor stem cells. Identification and targeting using an engineered antibody. Cancer Res 2012; 72. https://doi.org/10.1083/jcb.1814rr3
- Hembrough T, Thyparambil S, Liao WL, Darfler M,Krizman D et al. Qantitative multiplexed SRM analysis of oncogenic receptors in FFPE colorectal carcinoma tissue. Cancer Res 2012:72(8):5537. https://doi.org/10.1158/1538-7445.AM2012-5537
- Konduri K, Gallant JN, Chae YK, Giles PS, Gitlitz BJ et al. EGFR fusions as novel therapeutic targets in lung cancer. Cancer Discov 2016; 6:601-11. https://doi.org/10.1158/2159-8290.CD-16-0075
- Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor signaling on cancer. Clin Cancer Res 2014; 20:28-34. https://doi.org/10.1158/1078-0432.CCR-13-0122
- Duarte HO, Bolmafia M, Mereiter S, Osorio H, Gomes J, Reis CA. Gastric cancer cell glycosylation as a modulator of the ErbB2 oncogenic receptor. Int J Med Sci 2017; 18(11):2262. https://doi.org/10.3390/ijms18112262
- Staudt LM. Therapeutic strategies in lymphoma based on oncogenic B receptor and MYD signaling. International Symposium on childhood 2012; 1:1. https://doi.org/10.1615/CritRevOncog.2017020816

- Conway-Campbell BL, Wooh JW, Brooks AJ, et al. Nuclear targeting of the growth hormone receptor results in dysregulation of cell proliferation and tumorigenesis. Proc Natl Acad Sci USA 2007; 104:13331-13336. https://doi.org/10.1073/pnas.0600181104
- Longmore GD, Pharr P, Neumann D, et al. Both megakaryocytopoiesis and erythropoiesis are induced in mice infected with a tretrovirus expressing an oncogenic erythropoietin receptor. Blood 1993; 82(8):2386-95.
- Russell LJ, De Cadtro DG, Griffiths M, *et al.* A novel translocation, t (14; 19) (q32; p13, involving IGH and the cytokine receptor for erythropoietin. Leukemia 2009; 23:614-617. *https://doi.org/10.1038/leu.2008.250*
- Maxson JE, Gollib J, Pollyea DA, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med 2013; 368:1781-90. https://doi.org/10.1056/NEJMoa1214514
- Merchant JL. What lurks beneath: IL-11, via stat-3, promotes inflammation-associated gastric tumorigenesis. J Clin Invest 2008,118(5):1628-31 https://doi.org/10.1172/JCI35344
- Ernst M, Najdovska M, Grail D, et al. STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J Clin Invest 2008; 118:1727-38. https://doi.org/10.1172/JCI34944
- Park JW, Zhao L, Willingham M, Cheng SY. Oncogenic mutations of thyroid hormone receptor beta. Oncotarget 2015; 6(10):8115-31. https://doi.org/10.18632/oncotarget.3466
- Zhu G, Mische E, Seigneres B. Novel treatment of acute promyelocytic leukemia: As2O3, retinoic acid and retinoid pharmacology. Curr Phar Biotechnol 2013; 14:849-858. https://doi.org/10.2174/1389201015666140113095812
- Hauksdotti H, Privalsky ML. DNA recognition by the aberrant retinoic acid receptor implicated in human acute promyelocytic leukemia. Cell Growth Differ 2001; 12:85-98. PMID: 11243468
- Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, et al. Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res 2004; 64:8867-8875. https://doi.org/10.1158/0008-5472.CAN-04-2938
- Paltoglous S, Das R, Townley SL, *et al.* Novel androgen receptor co-regulator GRHL2 exerts both oncogenic and antimetastatic functions in prostate cancer. Cancer Res 2017; 77(13); 3417–30. https://doi.org/10.1158/0008-5472.CAN-16-1616
- Ludwik KA, McDonald OG, Brenin DR, et al. ER alphamediated nuclear sequestration of RSK2 is required for ER⁺ breast cancer tumorigenesis. Cancer Res 2018 15;78(8): 2014-2025.https://doi.org/10.1158/0008-5472.CAN-17-2063
- EI-shennawy I, Dubrovskyi O, Kastrati I, et al. Coactivation of estrogen receptor and IKKbeta induces a dormant metastatic phenotype in ER-positive breast cancer. Cancer Res 2017, 78(4):1-11. https://doi.org/10.1158/0008-5472.CAN-17-1686
- Veeraraghavan J, Tan Y, Cao XX, et al. Recurrent ESR-CCDC170 rearrangement in an aggressive subset of oestrogen receptor-positive breast cancer. Nat Commun. 2014; 5:4577. https://doi.org/10.1038/ncomms5577
- 29. Varricchio L. The dominant negative beta isoform of the glucocorticoid receptor is uniquely expressed in erythroid cells expanded from polycythemia vera patients. Blood 2011;118:425.

https://doi.org/10.1182/blood-2010-07-296921

 Melhem A,Yamada SD, Fleming GF, Delgado B,Brickley DR, et al. Administration of glucocorticoids to ovarian cancer patients is associated with expression of the antiapoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res 2009; 15:3196-3204. https://doi.org/10.1158/1078-0432.CCR-08-2131

- Ebisawa T, Tojo K, Tajima N, Kamio M, Oki Y, et al. Immuno histochemical analysis of 11-beta-hydroxysteroid dehydrogenase type 2 and glucocorticoid receptor in subclinical Cushing's disease due to pituitary macroadenoma. Endocrine Pathol 2008; 19:252-260. https://doi.org/10.1007/s12022-008-9052-0
- 32. Murray E, Hernychova L, Scigelova M, et al. Quantative proteomic profiling of pleomorphic human sarcoma identifies CLIC1 as a dominant pro-oncogenic receptor expressed in diverse sarcoma types. J Proteome Res 2014; 13:2543-59. https://doi.org/10.1021/pr4010713
- Zhao Y. The oncogenic functions of nicotinic acetylcholine receptors. J Oncol 2016; (3):1-9 https://doi.org/10.1155/2016/9650481
- Denzel S, Maetzel D, Mack B, *et al.* Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer 2009; 9:402. *https://doi.org/10.1186/1471-2407-9-402*
- Litvinov SV, Bakker HA, Gourevitch, *et al.* Evidence for a role of the epithelial glycoprotein 40 (EpCAM) in epithelial cell-cell adhesion. Cell Adhes Commun 1994; 2:417-28. *https://doi.org/10.3109/15419069409004452*
- Herlyn D, Herly M, Ross AH, *et al.* Effective selection of human tumors growth-inhibiting monoclonal antibodies. J Immunol Methods 1984;72:157-67 https://doi.org/10.1016/0022-1759(84)90041-3
- Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer 2007; 96 (3) :417-23. https://doi.org/10.1038/sj.bjc.6603494
- Maetzel D, Denzel S, Mack B, et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009; 11:162-71. https://doi.org/https://doi.org/10.1038/ncb1824
- Winter MJ, *et al.* Expression of EpCAM shifts the state of cadherin mediated adherins from strong to weak. Exp Cell Res 2003; 285:50-58.
 - https://doi.org/10.1016/S0014-4827(02)00045-9
- 40. Went P, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. Br J Cancer 2006; 94:128-35. https://doi.org/10.1038/sj.bjc.6602924
- Osta WA, Chen Y, Mikhitarian K, *et al.* EpCAM is over expressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 2004; 64:5818-24. https://doi.org/10.1158/0008-5472.CAN-04-0754
- 42. Spizzo G, Went P, Dirnhofer S, *et al.* High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat 2004; 86:207-213.
 - https://doi.org/10.1023/B:BREA.0000036787.59816.01
- 43. Moldenhauer G, Salnikov AV, Luttgau S, et al. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhension molecule monoclonal antibody agonist pancreatic carcinoma. J Natl Cancer Inst 2012;104:622-34. https://doi.org/10.1093/jnci/djs140
- 44. Ng VY, Ang SN, Chan JX, Choo AB. Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 2009. https://doi.org/10.1111/j.1349-7006.2010.01661.x
- 45. Kimura O, Takahashi T, Ishii N, *et al.* Characterization of the epithelial cell adhesion molecule (EpCAM) +cell population in hepatocellular carcinoma cell lines. Cancer Sci 2010; 101, 2145 -55. https://doi.org/10.1111/j.1349-7006.2010.01661.x
- 46. Yamashita T, Budhu A, Forgues M, et al. Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signalling in hepatocellular carcinoma. Cancer Res 2007, 67:10831-10839.https://doi.org/10.1158/0008-5472.CAN-07-0908

- 47. Van der Gun BTF, Melchers LJ, Ruiters MHJ, De Leij LFMH, McLaughlin PMJ, et al. EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 2010; 31(11):1913-21.https://doi.org/10.1093/carcin/bgq187
- Matsumoto T. Proliferating EpCAM-positive ductal cells in the inflamed liver give rise to hepatocellular carcinoma. Cancer Res 2017; 77(22); 6131–43. https://doi.org/10.1158/0008-5472.CAN-17-1800
- Ensinger C, Kremser R, Prommegger R, et al. EpCAM over expression in thyroid carcinomas: a histological study of 121 cases. J Immunoth 2006; 29:569. https://doi.org/10.1136/jcp.2011.090274
- Gumbiner BM. Cell adhesion: the molecular basis of tissue artchitecture and morphogenesis. Cell 1996; 84:345-57. https://doi.org/10.1016/s0092-8674(00)81279-9
- Basak S, et al. Colorectal carcinoma invasion inhibition by Co17-1A/GA733 antigen and its murine homologue. J Natl Cancer Inst 1998, 90:691-97. https://doi.org/10.1093/jnci/90.9.691
- 52. Takeichi M, Hatta K, Nose A, *et al.* Cadherin-mediated specific cell adhesion and animal morphogenesis. Ciba Found Sym 1989; 144:243-9. https://doi.org/10.1002/9780470513798.ch14
- Hosthuetzky H, Aberle A, Kemier R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994; 127:1375-80. https://doi.org/10.1083/jcb.127.5.1375
- Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci 2002; 115:3977-8.
- 55. Munz M, *et al.* The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene. 2004; 23:5748-58.
- 56. Kuhn S, Koch M, Nubel T, Ladwein M, Antolovic D, Klingbeil P, et al. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 2007; 5(6):553-567. https://doi.org/10.1158/1541-7786.MCR-06-0384
- Kenny PA, Bissell MJ. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 2007; 117:337-345. https://doi.org/10.1172/JC129518
- Wu CJ, Mannan P, Lu M, et al. Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctiond. The J Biol Chem 2013; 288:12253-68. https://doi.org/10.1074/jbc.M113.457499
- Kang DE, et al. Presenilins mediate phosphatidylinositol 3kinase/AKT and ERK activation via select signalling receptors. Selectivity of PS2 in platelet-derived growth factor signalling. J Biol Chem 2005; 280:31537-547. https://doi.org/10.1074/jbc.M500833200
- Sears HF, Herlyn D, Steplwski Z, *et al.* Effects of monoclonal antibody immunotherapy on patients with gastrointestinal adenocarcinoma. J Biol Response Med 1984; 3:138-50. PMID: 6374043
- Carpenter G, Red Brewer M: EpCAM: another surface-tonucleus missile. Cancer Cell 2009; 15:165-66. https://doi.org/10.1016/j.ccr.2009.02.005
- Riethmuller G, Holz E, Schlimok G, Schmiegel W, Raab R, et al. Monoclonal antibody therapy for resected Dukes' colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 1998; 16:1788-94. https://doi.org/10.1200/JCO.1998.16.5.1788
- Adkins JC, Spencer CM. Edrecolomab (monoclonal antibody 17-1A. Drugs 1998; 56:619-26. https://doi.org/10.2165/00003495-199856040-00011
- 64. Kurtz JE, Dufour P. Adecatumumab:an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opin Biol Ther 2010; 10(6):951-8. https://doi.org/10.1517/14712598.2010.482098