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Abstract 
____________________________________________________________________________________________________ 
 
Background: Designing pharmaceutical compounds to treat brain diseases, or 
drugs that interact with biological targets in peripheral organs without penetrating 
the blood-brain barrier, remains a very difficult task. It is evident that animal 

models are costly and unproductive; therefore, the pharmaceutical industries and/or 
regulatory bodies need reliable, accurate and interpretable predictive tools to assess 
the permeability of pharmaceutical compounds across the blood-brain barrier. 
Method: This study proposes the development of artificial intelligence models 
characterized by greater accuracy and enhanced explanatory capacity, in the 
context of binary classification of blood-brain barrier permeability of drug 
candidate compounds. By applying a resampling approach and clustering 
technique, we developed five distinct artificial intelligence models support vector 
machine, k-nearest neighbor, classification and regression decision tree, random 

forest, and gradient boosting machine using only 10 molecular descriptors and a 
dataset of 1,726 molecular observations (comprising 1,000 originals and 726 
synthetic compounds). 
Results: Of all the models evaluated, Gradient Boosting Machine had the best 10-
fold cross-validation statistics, achieving prediction accuracy (Q), MCC and AUC 
of 91.04%, 0.82 and 1.0 on the external test set respectively. The gradient boosting 
machine outputs are explained using Shapley additive explanation approach. This 
method allows the main modeling descriptors involved in predicting blood-brain 

barrier permeability to be ranked in order of importance. 
Conclusion: Non-animal predictive models were designed to determine whether 
pharmaceutical compounds can penetrate the blood–brain barrier. The proposed 
model reached a reliable level of accuracy sufficient to prove extremely useful for 
virtual screening of large pharmaceutical compounds libraries. It revealed two key 
indicators for predictions: spatial distribution of atomic charges and electro 
negativity. 
Keywords: blood-brain barrier permeability; curse of dimensionality, explainable 

AI, logBB, machine learning, QSAR. 
 

 
INTRODUCTION 
 

The blood-brain barrier (BBB) can be defined as a 

highly selective, semi-permeable barrier to the 

circulatory system. Its main role is to maintain the 

homeostasis of the central nervous system (CNS), by 

isolating the brain from systemic blood circulation. 

This isolation protects the CNS from the damaging 

effects of harmful substances1. Although the BBB is 

defensive in nature, the inability of drug candidates to 
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cross it remains challenging. Correct administration of 

these drugs is therefore essential for treating diseases 

of the central nervous system (CNS), such as 

Alzheimer's disease, Parkinson's disease or CNS 

infections, which act directly on specific targets in the 
brain2. Furthermore, pharmaceutical compounds 

designed to interact with their molecular targets in 

peripheral organs must not cross the blood-brain barrier 

(BBB), in order to avoid side effects in the central 

nervous system (CNS). Many drug candidates have 

failed to reach the market due to a poor 

pharmacokinetic profile. In both cases, it is essential to 

have a clear idea of whether pharmaceutical compound 

candidates can cross the blood-brain barrier (BBB), 

which is crucial for the research and development of 

new treatments. 

Experimental determination of brain permeability 
provides more reliable data. However, its 

implementation remains complex, time-consuming and 

expensive, and requires access to highly sophisticated 

laboratory facilities, particularly in terms of equipment 

and animal resources1.This dynamic has led to a 

growing need for predictive models that are reliable, 

efficient and easy to use. In this context, quantitative 

structure-activity relationship (QSAR) tools have 

proved to be relevant solutions for rapidly and 

efficiently predicting or estimating the blood-brain 

barrier (BBB) permeability of drug compounds. 
Indeed, QSAR relies on theoretical and computational 

methodologies to predict BBB penetration faster, 

cheaper and easier. Various model building tools used 

in QSAR have been satisfactorily implemented by 

researchers and in these approaches the development of 

artificial intelligence (AI) and its subfield machine 

learning (ML) techniques have been successfully used 

to predict whether a query compound is BBB 

permeable or not. 

To date, several QSAR models that predict BBB 

permeability, grouped into two main categories, 

classification and regression, have been satisfactorily 
implemented by authors using machine learning 

techniques. As part of the research carried out by 

Shaker et al.1, classification and regression models 

were developed with the aim of predicting both the 

class (permeable or non-permeable) and the 

concentration ratio of the drug compound in the brain 

to the compound in the blood, provided by logBB .The 

researchers designed and refined their models using a 

selection of machine learning algorithms, namely Light 

GBM, RF, k-NN, MLR, SVM, AdaBoost, XGBoost 

and ANN. The best LightGBM regression prediction 
model called LogBB_Pred for the test set showed an R2 

of 0.61 and mean square error (MSE) of 0.36. 

Implemented as classification, LogBB_Pred achieved 

on the independent test dataset an accuracy (Q) of 

85%, an MCC (Mathews Correlation Coefficient) of 

0.60, and a positive predictive value (PPV) of 1.01. 

Two years previously, they used 1,119 molecular 

features for training and testing LightGBM machine 

algorithm to a large dataset of 7,162 compounds for the 

BBB permeability prediction with an accuracy of 89%, 

an area under the curve (AUC) of 0.93, specificity (Sp) 
of 0.77, and sensitivity (Se) of 0.93, when ten-fold 

cross-validation was performed3. Faramarzi and 

coworkers constructed two distinct binary QSAR 

models for logBB permeability prediction using 392 

medicinal chemistry structural descriptors with a 

training set of 921 compounds4. The combined 
predictive performance of the two models obtained 

achieved an accuracy of 66 %, a sensitivity (Se) of 

80%, a negative predictive value (NPV) of 70%, an Sp 

of 51%, a PPV of 64% and an MCC of 0.4. Singh et 

al.5, employed three different machine-learning 

algorithms (RF, MLP, SVM) with descriptors and 

fingerprints calculated using PaDEL-Descriptorv2.21. 

They curated a dataset of 605 compounds and trained 

two classification models, based on two thresholds, 

with 389 2D molecular descriptors. The best-obtained 

consensus model achieved good predictive accuracies. 

Mauri et al., attempted to estimate propensity of 
compounds to penetrate the BBB by training k-NN 

machine learning model using a dataset of 3,884 

molecules, 2,239 molecular descriptors including 166 

MACCS fingerprints, 2048 bits EFCP and 9 features. 

Their best consensus model showed good evaluation 

metrics (Q=82.7%, Se=76%, Sp=91.6%)6. Yuan et al., 

developed SVM-based BBB permeability prediction 

models using a larger dataset of 1,990 compounds with 

1,874 molecular descriptors and five different types of 

fragment descriptors ranging from 307 to 4860 bit. The 

best prediction accuracies, ranging from 94.9 to 97.5%, 
were obtained by combining the use of property-based 

descriptors and fingerprints7. Although highly accurate, 

these models share the same shortcomings: a large or 

very large number of descriptors, increasing the 

likelihood of overfitting and unexplainability. 

Furthermore, the classification models were built using 

unbalanced datasets, resulting in a high rate of false 

positives, creating models that failed to save 

experimental costs8. 

Given these critical deficiencies in building more 

reliable machine learning models, we implemented 

hierarchical clustering of descriptors using the 
ClustOfVar algorithm provided by the R programming 

software to solve the problem of the curse of 

dimensionality caused by the large number of 

descriptors used. To improve the accuracy of our 

model, we used a resampling method based on SMOTE 

(Synthetic Minority Oversampling Technique), which 

uses information from the data to generate synthetic 

samples from the minority class9. In addition to the 

performance of model, it is its explicability that is a 

determining factor for the implementation of 

computational methods in the field of pharmaceutical 
research. In this work, the shapley additive 

explanations (SHAP) values were used to explain the 

best proposed black box model predictions at both local 

and global levels to identify the significant molecular 

descriptors that influence BBB permeability prediction. 

 

MATERIALS AND METHODS 

 

Data collection  
In the field of QSAR modeling, binary classification is 

the process of classifying compounds on the basis of 
two predefined classes. Here, observations or 
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N’guessan et al.,                                                Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20   

ISSN: 2456-8058                                                                10                                                    CODEN (USA): UJPRA3 

compounds were divided into two classes using logBB 

as a criterion: BBB+ (substances that tend to cross the 

BBB) if logBB≥ −1 or BBB– (substances that do not 

tend to cross the BBB) if logBB< −1, respectively. In 
our binary BBB permeability prediction investigation, 

the dataset was obtained and integrated from a previous 

study1. In their study, they collected the largest logBB 

data set of 1000 organic compounds separated in a 

training set of 913 compounds, a validation set of 27 

compounds and additional molecules from 

MedChemExpress 

(https://www.medchemexpress.com/). In binary 

classification modelling, the next crucial step is to 

transform the compounds into vectors of physical and 

chemical properties. These vectors are determined from 
the chemical structures represented in SMILES 

(Simple Molecular Input Layer) format. In this study, 

for each compound of the final dataset, 919 structural 

2- and 3-D descriptors have been calculated using 

Mordred software; a publicly molecular descriptors 

calculator. Thus, the entire data set of our study, 

consisting of a 1000X920 matrix, obtained from 

Shaker and coworkers’ study stands as starting point 

for the development of our QSAR models for the BBB 

permeability prediction1. 

Feature selection methods 

Increasing the number of descriptors amplifies the 
effect of the error terms, and consequently increases 

the correlation between the explanatory variables, with 

potentially spurious results. In machine learning, 

feature selection plays a crucial role. It aims to reduce 

the size of the feature space, speed up the learning 

process, improve accuracy and make the learning 

results more explainable. In this work, the hierarchical 

clustering algorithm, implemented in the hclustvar 

function of the R package ClustOfVar, was used for 

partitioning or clustering the chemical descriptorsi. 

Based on the PCAMIX method, a principal component 

analysis for a mixture of p1 quantitative ({𝑥1, … , 𝑥𝑝1}) 

and p2 qualitative ({𝑦1, … , 𝑦𝑝2}) variables, the 

hclustvar function calculates synthetic quantitative 

variables that summarize as well as possible the 
variables in the clusters of the partition obtained. As 

described by Chavent et al.10, the synthetic variable sk 

is defined as the quantitative variable most related to 

all variables in cluster Ck: 

𝑠𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈ℝ𝑛 { ∑ 𝑟𝑢,𝑥𝑗

2

𝑥𝑗∈𝐶𝑘

+ ∑ 𝜂𝑢|𝑦𝑗

2

𝑦𝑗∈𝐶𝑘

} = √𝑛 𝑢𝑘
1𝜆𝐶𝑘

1  

                                        (1) 

Where 𝑢𝑘
1  is the first eigenvector of 𝑈𝑘 matrix, 𝜆𝑐𝑘

1  

represents the first eigenvalue of 𝐷𝑘 matrix, n is 

observation number, 𝑟2 represents the squared Pearson 

correlation for the quantitative variables and 𝜂2, the 

correlation ratio for the qualitative variables10. The two 

previous matrices (𝑈𝑘 and 𝐷𝑘) are obtained after 

singular value decomposition(SVD) of the matrix 𝑀𝑘, 

obtained by concatenating two matrices corresponding 

to the quantitative and qualitative data matrices 𝑋𝑘  and 

𝑌𝑘, respectively, with their standardized versions 𝑋̃𝑘 

and 𝑌̃𝑘: 

 

𝑀𝑘 =
1

√𝑛
(𝑋̃𝑘|𝑌̃𝑘) = 𝑈𝑘𝐷𝑘𝑉𝑇                      (2) 

The concept of hierarchical grouping of variables is 

applied to machine learning and data analysis methods. 

This methodical approach is based on the construction 

of a nested tree hierarchy, which is built from a set of 

variables. These approaches organize descriptors or 

variables into hierarchical representations in which the 

clusters at each level of the hierarchy are created by 
merging the clusters at the level immediately below10. 

To build a hierarchy of p = p1+p2 variables, hclustvar 

function optimizes two homogeneity functions. The 

first homogeneity function h (Eq.3) measures adequacy 

between the variables in the cluster Ck and its central 

synthetic quantitative and/or qualitative variable:  

ℎ(𝐶𝑘) = ∑ 𝑟𝑥𝑗,𝑠𝑘
2

𝑥𝑗𝜖𝐶𝑘
+  ∑ 𝜂𝑠𝑘|𝑦𝑗

2
𝑦𝑗∈𝐶𝑘

= 𝜆𝑐𝑘
1     (3) 

The second function, H, defined as the sum of the 

homogeneities applied to the k clusters of the partition 

Pk, is obtained as follows:   

𝐻(𝑃𝑘) = ∑ ℎ(𝐶𝑘𝑘 ) = 𝜆𝑐1
1 + ⋯ + 𝜆𝑐𝑘

1      (4) 

Finally, two clusters (C1 and C2) are aggregated by 

choosing the smallest aggregation criterion, d, defined 
as: 

𝑑(𝐶1, 𝐶2) = ℎ(𝐶1) + ℎ(𝐶2) − ℎ(𝐶1 ∪ 𝐶2) = 𝜆𝑐1
1 +𝜆𝑐2

1 −

𝜆𝑐1∪𝑐2
1                 (5) 

The maximum of the second homogeneity function (H) 

is reached when this procedure is repeated among all 

the remaining groups. As a result, once the recursive 
algorithm has been completed, a new partition is 

generated. The hclustvar function also provides a 

boostrap process to obtain the appropriate number of 

clusters. This is evaluated by the stability of the p-

nested partitions of the resulting dendrogram, since 

each variable is considered as a cluster at the start10. 

Data set standardizing 

The standardization of data sets is of crucial 

importance for the optimal operation of machine 

learning algorithms. Such algorithms or estimators may 

exhibit suboptimal performance if the features do not 
resemble standard normal data (mean of 0 and a 

standard deviation of 1). Given that the range of values 

in the raw data varies considerably, the input variables 

need to be normalized so that higher numerical values 

do not dominate lower numerical values, while 

preserving the full informational structure of the data 

being studied11. The normalization procedure is carried 

out autonomously for each feature, which requires the 

relevant statistics to be calculated on the samples in the 

dataset. In this study, the standard Z-score of feature 𝑋 

is computed as follows: 

𝑍 =
𝑋−𝜇

𝜎
   (6) 

Where μ and σ stand for the average and standard 

deviation value of descriptor 𝑋 respectively. In this 

work, we use StandardScaler protocol offered by 

python scikit-learn module12. 

Data balancing  

As our dataset is imbalanced, we use the Synthetic 

Minority Oversampling Technique (SMOTE) provided 

by python imbalanced-learn module to have same ratio 

of target variable. In most cases, conventional machine 

learning algorithms are not suited to this type of 

dataset. This is because they favor samples from the 

http://www.ujpr.org/
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majority class, which results in poor predictive 

accuracy for the minority class and limited 

generalization capability. SMOTE is a popular 

oversampling approach that handles imbalance by 

analyzing minority class similarity in near-neighbor 
feature space and generating new synthetic minority 

data into the original set. This methodological 

approach involves inserting synthetic examples along 

line segments linking all the k nearest neighbors of the 

minority sample, where k =513. A synthetic sample, xs, 

was generated by selecting a minority instance, xi, 

identifying its k nearest neighbors using Euclidean 

distance, and constructing a vector toward one 

neighbor, xk. This vector was scaled by a random 

coefficient 𝛼(0,1) and added to xi
9. The resulting 

process of minority class synthesis is summarized by 
the following equation: 

 𝑥𝑠 = 𝑥𝑖 + 𝛼(𝑥𝑖 − 𝑥𝑘)  (7) 
Handling data balancing and applicability domain 

(AD) with statistical methods 
QSAR models are mathematical representations that 

correlate the biological or physicochemical responses 

of compounds with their structural and molecular 

descriptors generally expressed as numerical values. 

Although each numerical value is an individual data 

point, the data distribution, on the other hand, provides 

insight into the underlying statistical behavior of the 
descriptors considered for all molecular observations, 

thus describing how these values are distributed, 

concentrated, or shaped in the dataset. In this study, the 

Synthetic Minority Oversampling Technique (SMOTE) 

was employed to augment and balance the dataset by 

generating additional samples for the underrepresented 

class. To ensure that the synthetic data accurately 

reflect the distribution of the original experimental 

data, the Jensen–Shannon Distance (JSD), a robust and 

widely used statistical measure, was calculated to 

assess the similarity between the two datasets9,14.The 
JSD that measures the degree of overlap or 

dissimilarity between two distributions P and 𝑄 as 

defined mathematically as follows: 

 
JSD(P, Q) = √

1

2
KL(P || M) +

1

2
KL(Q || M) (8) 

Where  

 M =
1

2
(𝑃 + 𝑄) (9) 

 

M is a mixed distribution of the P and Q distributions; 

KL(∙||∙) represents the Kullback-Leibler divergence. 

After the quantitative comparison with JSD score, 

kernel density estimation (KDE) was applied to derive 

the corresponding probability density functions, 

enabling a qualitative assessment of the data 

distributions. This method was successfully employed 

in previous work9. 
PCA is a linear statistical transformation technique that 

projects all data (observations and variables) into a 

lower-dimensional orthogonal space defined by 

principal components (PCs), which successively 

capture a significant portion of the information or 

variance of the original dataset9. The PCA bounding 

box method, categorized among range-based and 

geometric approaches, is one of several techniques 

proposed for defining the applicability domain (AD) of 

QSAR models. An ideal AD approach should delineate 

the interpolation regions within a multivariate 

descriptor space, ensuring reliable model predictions 
for compounds structurally similar to those in the 

training set15. 

Following the completion of all data processing steps, 

the data must be split prior to executing machine 

learning methods. The training and validation sets were 

selected at random using the train_test_split function 

from the sklearn python (version 3.9.2) library. The 

value assigned to the test_set size parameter is 0.2, 

which is defined as 80% for training and 20% for 

validation or test subsets with the shuffled option12. 

Model implementation 

This work applied five machine learning estimators 
namely SVM, k-NN, CART-DT, RF, and GBM 

implemented with the scikit-learn package (Python 

3.9.2) to model and predict the BBB permeability of 

drug molecules12.  

1. The support vector machine (SVM) is a supervised 

learning algorithm applied to both classification and 

regression problems. The fundamental objective of 

this process is to determine an optimal hyperplane 

that separates at most two classes in a p-

dimensional feature space. This improves the 

overall ability of the model to generalize when 
dealing with unknown data16. For a dataset of 

labeled pairs (𝑥1, 𝑦1) …… (𝑥𝑛 , 𝑦𝑛) where 𝑥𝑖 ∈ 𝑅𝑝 

and 𝑦𝑖 ∈ {−1,1}, the decision function or optimal 

separating hyper plane: 𝑔(𝑥) = 𝑤𝑇𝑥𝑖 + 𝑏 is 

obtained by estimating the weight vector 𝑤𝑇 =
(𝑤1 … … 𝑤𝑛) and the intercept  𝑏. For linear SVM, 

support vectors 𝑥𝑖
∗  that meet the conditions 𝑤𝑇𝑥𝑖

∗ +
𝑏 = 1 and 𝑤𝑇𝑥𝑖

∗ + 𝑏 = −1, define the outer limits 

of the two classes, and the separation distance 

between these two hyperplanes given by, 
2

‖𝑤‖
, is 

maximized. Once the parameters w and b have been 

determined, any input vector 𝑥𝑖 can be classified 

using the function: 𝑠𝑖𝑔𝑛[𝑤𝑇𝑥𝑖 + 𝑏]; a positive 

result assigns the sample to the positive class 

(BBB+), while a negative value corresponds to the 

negative class (BBB-).When the training data is not 

linearly separable, a non-linear SVM projects the 

input vectors into a higher dimensional feature 

space using a kernel function. The radial Gaussian 

basis function (RBF) kernel is a common choice 

defined as follows: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

) (10) 

Where 𝛾 is the kernel parameter.  
2. k-nearest neighbors (k-NN) algorithm is a 

supervised non-parametric approach used for both 

classification and regression modeling. Unlike 

parametric methods, it assumes no underlying data 

distribution. For a given input, xj, the algorithm 

identifies the k-nearest training data points 

according to a predefined distance metric and 

assigns a class label or predicted value based on the 

majority vote or average response of these 

neighbors. In the present study, the nearness is 
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measured by the Euclidean distance between 𝑥𝑗  

and 𝑥𝑘 as follows: 

 
𝑑(𝑥𝑗 , 𝑥𝑘) = √‖𝑥𝑗 − 𝑥𝑘‖

2
 (11) 

The 1-NN algorithm represents the simplest form of k-

NN, where only one neighbor is considered. The input 

xj is classified by assigning it the same label as its 

nearest sample17. 

3. A decision tree (DT) can be defined as a flexible 

supervised learning algorithm that is used for 

classification and regression, based on the division 

of the data. The process of partitioning the data, 

which is carried out recursively, involves 
subdividing the dataset according to the feature that 

allows the most efficient division at each stage. 

This approach results in a hierarchical tree 

structure, where internal nodes represent feature-

based decisions and leaf nodes correspond to final 

predictions. Over the last few decades, a set of 

algorithmic methods dedicated to the construction 

of decision trees has emerged. The aim of these 

algorithms is twofold: firstly, to increase the 

accuracy of the models, and secondly, to adapt to 

the diversity of data sources18. Among them an 

optimized version of CART (Classification and 
Regression Tree), implemented as Decision Tree 

Classifier, is available in scikit-learn python 

package.  

4. The Random Forest (RF) algorithm is an ensemble-

based machine learning approach that aggregates 

the predictions of multiple decision trees to 

improve accuracy and minimize overfitting. The 

tree generation process relies on random sampling 

of subsets of the training data and features available 

for each tree. This random process has the effect of 

increasing model diversity and consolidating 
generalization performance. During prediction, 

each tree contributes to a result. The final result is 

obtained by averaging the predictions in regression 

tasks or by applying majority voting in 

classification. As a result, Random Forest models 

demonstrate greater robustness and generalization 

capability than individual decision trees. 

5. The concept of “boost” refers to a set of algorithms 

designed to optimize the predictive capabilities of a 

learning system by increasing its performance, from 

weak to strong. Intuitively, these algorithms merge 

a number of weak performance learnings into a 
single strong performance model, significantly 

improving the results. Thus, boosting algorithms 

work by sequentially training a set of weak learning 

models and combining them for prediction where 

subsequent learners focus more on the errors of 

previous learners improving prediction performance 

to ultimately obtain, through this model, strong 

learners. The superiority of boosting lies in its serial 

learning nature, which enables excellent 

approximation and generalization19. Among the 

various kinds of boosting approaches, the highly 
effective tree boosting methods, Gradient Boosting 

Machine (GBM), have been used for binary 

classification-based QSAR models of logBB 

permeability predictions. 

Binary classification assessment methods 

Internal 10 fold cross-validation scheme was applied to 

the training dataset in order to identify the models with 
the best predictive performance. The final evaluation of 

the classifiers was carried out using an independent test 

set, the aim of which was to assess their generalization 

capability. For binary classification performance 

evaluation, several scalar measures were considered, 

including accuracy (Q), precision (Pr), recall (Re), 

specificity (Sp), F-score (F) and Matthews correlation 

coefficient (MCC). These measures are defined 

mathematically as follows: 

 Q(%) = 100 ×
TP + TN

TP + TN + FN + FP
 

    (12) 

 Pr (%) = 100 ×
TP

TP + FN
 

(13) 

 Re(%) =  100 ×
TP

TP + FN
 

(14) 

 F(%) = 100 ×
2 × TP

2 × FN + TP + FP
 (15) 

 Sp(%) = 100 ×
TN

TN + FP
 (16) 

 MCC

=
TN × TP − FP × FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (17) 

The quantities TP, FN, TN and FP are defined as true 

positives, false negatives, true negatives and false 

positives respectively. Beyond standard metrics, model 
performance was also assessed using the receiver 

operating characteristic (ROC) curve and its associated 

area under the curve (AUC), which provides a 

summary measure of classification accuracy. 

Models explainability 

“Black box” models are characterized by their inability 

to provide decisions that can be clearly interpreted 

and/or explained. Transparent models, on the other 

hand, have the ability to allow direct understanding of 

their internal reasoning. In drug research, for example, 

the explainability of models plays a crucial role, as the 

decisions taken must be justifiable. Interpretability is 
therefore just as important as the accuracy of 

predictions20. In recent years, Lundberg and Lee have 

developed a unified framework for interpretability 

prediction namely SHAP (SHapley Additive 

exPlanations)21. This explanation model suggests 

taking an additive feature contribution method as a 

weighted sum of the binary features: 

 
𝑔(𝑧′) = 𝜙0 + ∑ 𝜙𝑖𝑧𝑖

′

𝑀

𝑖=1

 (18) 

With M, the number of simplified input features, 𝑧′ ∈
{0,1}𝑀 and the shapely values (weights) are defined as 

follow: 
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𝜙𝑖(𝑓, 𝑥) = ∑

|𝑧′|! (𝑀 − |𝑧′| − 1)!

𝑀!
[𝑓𝑥(𝑧′)

𝑧′⊆𝑥′

− 𝑓𝑥(𝑧′\𝑖)] 

(19) 

Where 𝑓 is the original model, |𝑧′|is the number of 

non-zero entries in 𝑧′, and 𝑧′ ⊆  𝑥′represents all 

𝑧 ′vectors where the non-zero entries are a subset of the 

non-zero entries in a simplified input 𝑥′. According to 

Lundberg et al., only one possible explanation model 𝑔 

satisfies equation 18 and three properties (local 
accuracy, missingness and consistency)21. SHAP, based 

on a concept from the field of cooperative game theory 

(Eq.19), provides model transparency for any machine-

learning algorithm to define feature influence at the 

individual prediction level (i.e., local interpretability). 

In the perspective of BBB permeability prediction, 

Shapley values are assigned to each feature in order to 

estimate their importance and the direction of their 

impact for a particular prediction. Strongly positive 

SHAP values indicate that the molecular descriptor 

helps to predict molecules that cross the BBB, whereas 

strongly negative SHAP values indicate that the 
molecular descriptor helps to predict molecules that do 

not cross the BBB. Several variants of the SHAP 

algorithm have been reported: Kernel SHAP (model-

agnostic), Tree SHAP (specifically applicable to model 

derived from trees) and Deep SHAP (specialized for 

deep learning models). Model explanation and analysis 

were performed using the SHAP package in Python (v. 

0.43.0), which enables the quantification of each 

contribution of feature to model predictions22. 

 

RESULTS AND DISCUSSION 

 

Data set distribution analysis 
According to data gathered from published studies, a 

total of 1,000 compounds linked to BBB permeability 

were compiled with 137 BBB- and 863 BBB+ after 

data separation. The chemical diversity of the 

compounds used in both the training and external 

validation sets was extensively analyzed by Shaker and 

coworkers to support the construction of a robust and 

reliable binary classification model. Thus, similar 

compounds were discarded on the basis of Tanimoto 

similarity, preserving the uniqueness of the compounds 
and avoiding biased and over fitted models with an 

abundance of similar compounds1. The success of the 

machine-learning algorithms depends on the quality of 

the data in order to obtain a generalized predictive 

model of the classification problem. Therefore, to 

ensure optimum data quality and optimize the 

performance of the machine learning models, a 

rigorous normalization procedure was implemented. 

This involved centering each feature around a mean 

equal to zero and scaling it to a standard deviation of 

one. Like redundancy and non-standardizing, 
unbalanced datasets have a serious impact on the 

optimization performance of binary classification 

machine learning models. Thus, using the SMOTE 

method, we obtained 1,726 compounds (1000 

evaluated chemicals and 726 synthethic compounds), 

divided into two balanced groups for the 

implementation of models to assess the ability of drugs 

to penetrate the BBB. Three hundred and forty-six 

(346) molecules (166 BBB- and 180 BBB+) serve as 

the test set to evaluate the generalization ability and 

reliability of the model and the remaining 1,380 

molecules were used to build the prediction models, 
which were divided into 697 BBB+ and 683 BBB. 

Feature involved in models 

Feature selection methods have been used for 

dimension reduction, and this technique is essential for 

mitigating the effects of the curse of dimensionality 

and improving the performance of algorithms9. The 

tree-like diagram, constructed using squared Pearson 

correlation coefficients, was divided horizontally to 

form forty (40) clusters of descriptors, each containing 

strongly correlated variables sharing similar 

information10. After grouping the descriptors, we 

selected one variable from each group, i.e. the one that 
best correlated with its centroid. Thus, the gain in 

cohesion was 50.77%. This percentage measures the 

correspondence between the descriptors of the cluster 

and its centroid (the first PC obtained by applying PCA 

to it). ClustOfVar algorithm for detecting a partition 

extracted from a tree-like diagram obtained by 

hierarchical representation of quantitative variables 

have been used. Each stage of the hierarchy is thus 

created by successively merging the clusters of the 

lower stage. This merge is initiated by the lowest stage 

with the most homogeneous partition, i.e. the partition 
whose cluster contains only one variable10. The 

difference between PCA and our clustering method 

built using the ClustOfVar algorithm is that the 

centroids of the obtained clusters can be correlated. 

Therefore, the correlation matrix of the 40 descriptors 

was performed to detect residual correlations, which 

could negatively affect the models by increasing 

variance. Finally, after removing redundant, non-

informative and irrelevant descriptors from the original 

high-dimensional dataset, we obtained 10 informative 

descriptors for BBB permeability prediction. The 

correlation matrix of the ten most informative and best 
selected descriptors was then constructed using the 

method described by N’guessan et al.9  

 

 
Figure 1: Correlation matrix of 10 non-redundant 

and informative selected descriptors. 

 
It appears highly improbable that any of the selected 

descriptors will be correlated with another, with all R² 

measuring no more than 0.40 (Figure 1). This suggests 

that multi-collinearity, a consequence of the curse of 

dimensionality, has been addressed.  

http://www.ujpr.org/


N’guessan et al.,                                                Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20   

ISSN: 2456-8058                                                                14                                                    CODEN (USA): UJPRA3 

Table 1 shows the 10 molecular descriptors obtained 

using a data mining procedure that integrates 

hierarchical clustering and correlation-based analysis. 

This approach allows us to assess both the strength and 

direction of relationships between variables. These 
descriptors are similar to those used in previously 

published qualitative QSAR models designed to predict 

the permeability of pharmaceutical compounds across 

the blood-brain barrier1,23. As shown in Table 1, a large 

proportion of the obtained descriptors belong to the 

autocorrelation descriptor class, with descriptors 

VSA_Estate8, AATSC0c, ATSC5pe, GATS1pe, 
ATSC3pe, and GATS2are.  

 

Table 1: Molecular descriptors using in this work. 
No Descriptors Description 

1 VSA_Estate8 Van der Waals surface area_electrotopological State 8 
2 AATSC0c Averaged and centered Moreau-Broto autocorrelation of lag 0 weighted 

by Gasteiger charge 
3 ATSC5pe Moran autocorrelation - lag 2 / weighted by Sanderson electronegativities 
4 GATS1pe Geary coefficient of lag 1 weighted by Pauling EN 
5 ATSC3pe Centered Moreau-Broto autocorrelation of lag 3 weighted by Pauling EN 
6 SdO Sum of atom-type E-State: =O 
7 SsssN Sum of atom-type E-State: >N- 
8 GATS2are Geary coefficient of lag 2 weighted by Allred-Rochow EN 

9 nRot Rotatable bonds count 
10 n5ing Number of 5-membered rings 

 

In molecular modelling and QSAR, it is common 

practice to use autocorrelation descriptors to describe 

how the physicochemical properties of molecules vary 
according to their spatial distribution structure. These 

descriptors are derived from a conceptual partitioning 

of the structure of the molecule and the application of 

an autocorrelation function. Typically, spatial 

autocorrelation descriptors are computed by 

considering the atoms of a molecule as discrete spatial 

points, with an atomic property assigned to each point. 

The descriptors are then weighted according to 

physicochemical parameters such as atomic weight, 

volume of van der Waals of considered atom, atomic 

electronegativity, atomic polarizability, atomic charge, 

or covalent radius24. In this work, E-state indices (SdO 
and SsssN) that encode electronic and topological 

environment of each atom are used as the most 

informative descriptors in classification-based QSAR 

models predicting blood-brain barrier permeability 

(logBB)25. 

Class imbalance handling 
As indicated in the previous study, we use the SMOTE 

approach to solve the class imbalance problem. We 

then proceed to a quantitative and qualitative 

assessment of its impact on the initial or original 

dataset9. A quantitative comparison between the 
synthetic (Ds) and true (Do) probability distributions 

was performed using the Jensen–Shannon Distance 

(JSD) across the ten most informative molecular 

descriptors. The resulting JSD scores, reflecting the 

degree of similarity between synthetic and original 

distributions, are presented in Table 2. As outlined in 

Table 2, the two distributions – the original one prior to 

SMOTE and the synthetic one following SMOTE 

algorithm are indistinguishable, with all JSD values 

approaching 0. Before modeling, a qualitative 

comparison between the two minority class 

distributions was performed for two informative 
descriptors selected based on their JSD scores 

(minimum and maximum) to further study the impact 

of the SMOTE algorithm.  

Table 2: JSD to quantitatively compare the original 

(Do) and synthetic (Ds) distributions of the 

minority class dataset for each descriptor involved 

in models. 

Descriptors(D) JSD(Do, 

Ds) 

VSA_EState8 0.10 
AATSC0c 0.13 
ATSC5pe 0.09 
GATS1pe 0.08 
ATSC3pe 0.08 
SdO 0.06 

SsssN 0.08 
GATS2are 0.07 
nRot 0.11 
n5Ring 0.09 

 

Kernel density estimation (KDE), a technique that 

estimates and plots probability distribution functions, 

was applied9. As demonstrated in Figure 2, there is a 

significant overlap in the probability distribution 

functions between the original and synthetic 

distributions. This indicates that the SMOTE algorithm 
effectively preserves data quality and maintains the 

local structure of features9. The finalized dataset 

encompasses a total of 1,726 molecular observations, 

which are associated with 10 informative descriptors. 

As illustrated in Table 3, a concise overview of the 

samples employed in the experimental procedures, both 

for training and testing, is provided.  

Hyperparameter values of ML models 

Following the identification of the optimal methods for 

dimensionality reduction and handling class imbalance 

problem, ML-based QSAR models for BBB 

penetration prediction were implemented. Prior to 
model development, a deep grid search with 10-fold 

cross-validation was constructed to adjust the 

hyperparameters of each classifier, except for the RF 

model where default values were used9. Table 4 

provides the best hyperparameters that gave the best 

QSAR performance based on the statistical training of 

the models used. 
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Figure 2:  Qualitative assessment of the impact of SMOTE algorithm on our dataset with KDE method. (a, b) 

plot of density functions of the descriptors SdO and AATSC0c for the original (Do), synthetic (Ds) and mixture 

(M) distributions colored blue, red and green respectively. 

 

Performance of ML models 

In this study, classification models were constructed 

utilizing five distinct machine learning (ML) 

algorithms. After model construction, both internal and 

external validation schemes were employed to assess 

model reliability. 10-fold cross-validation scheme was 

used for internal validation using training dataset 

consists of 1,380 molecular observations divided into 

697 BBB+ and 683 BBB- compounds (Table 3) and 10 

descriptors. In this procedure, the training dataset is 

stochastically partitioned into ten distinct splits. For 

each iteration, nine of these splits are used for training 

the model, while the remaining split is used to assess 

its performance. This process is repeated ten times so 

that every split was used once for validation, and the 

average of all results was taken as the final 

performance measure.  

 

Table 3: Details of the training and testing datasets used in this work. 

 

 

 

 

 

 

 

Table 4: Optimal hyperparameters obtained for all classification-based ML models. 
Classifiers Hyperparameters Values 

SVM C 3.0 
Kernel rbf 

Tolerance 1e-3 
Gamma 0.1 

k-NN k 3 
Weights uniform 

p 2 

CART-DT criterion gini 
max_depth 5 

min_samples_leaf 1 
max_features None 

min_samples_split 5 
min_impurity_decrease 0 

RF n_estimators 100 
criterion gini 

max_depth none 
min_samples_split 2 

max_features sqrt 
min_impurity_decrease 0.0 

bootstrap True 

GBM n_estimators 300 
max_depth 9 

max_features sqrt 

 

The performance of ML binary classifiers was 

compared based on an internal validation scheme using 

the training dataset. As shown in Table 5, the results of 

the five ML binary classification models are presented 

according to the evaluation measures defined and used 

in equations 12 to 17. The table clearly reveal that the 

decision tree classifier exhibits the weakest 

performance across all evaluation measures. 

Conversely, SVM and k-NN classifiers appear to have 

similar performance, although they differ in their 

ability to correctly classify BBB+ molecules. 

According to Table 5, GBM model outperforms all 

other binary classifiers in terms of Q (92.90%), Pr 

(94.84%), Re (90.61%), Sp (92.65%), and MCC (0.86). 

 Sample size Descriptors 

 
Before 

SMOTE 

After 

SMOTE 

Training 

set 

Test 

set 

Before 

ClustofVar 

After 

ClustofVar 

BBB+ 863 877 697 180 
919 10 BBB- 137 849 683 166 

Total 1000 1726 1380 346 

 a 
 b 
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The next best classifier is RF with Q = 91.74% for10-

fold internal cross-validation. Considering Q (%), Pr 

(%), F (%), and MCC, the classifiers were ranked in 

descending order of performance as GBM, RF, k-NN, 

SVM, and CART-DT. Based on the evaluation metrics, 
the GBM estimator was identified as the most effective 

logBB permeability prediction model of drug 

molecules. To further confirm its stability and 

predictive strength, GBM model was tested on an 

independent dataset that had not been used during 

training.  As shown in Table 5, he GBM classifier 

achieved a correct classification rate of 91.04% on the 
test dataset, accurately identifying 88.89% of the 

BBB+ molecular observations.   

 

Table 5: Performances of binary classification models for five machine learning methods on 10-fold internal 

cross-validation. 

 

Table 6: Comparison with previous classification-based ML models. 

 

 

 

 

 

 

 

 

 

The Ability of recommended classifier to recognize 
false-alarm molecule on the test dataset is good with Sp 

= 91.17 %; and the Pr, F and MCC scores are 93.57%, 

93.37% and 0.82 respectively. 

 

 
Figure 3: Receiver operating characteristics (ROC) 

curve for the test set using five machine learning 

methods and AUC (the area under ROC curve). 
 

As illustrated in Figure 3, the ROC curves of each 

classifier on the external test set are presented. It 

appears that all classifiers demonstrate superior 

performance in comparison to the random classifier, 

which is represented by the diagonal line 𝑓(𝑥) = 𝑥. 

Therefore, the area AUC scores are as follows: 0.85 for 

the CART-DT classifier, 0.90 for the SVM and k-NN 

classifiers, 1.0 for the RF and GBM classifiers. The 

study exhibits the effectiveness of our classifiers, 
particularly ensemble models, in accurately  

 

 

 

distinguishing between blood-brain barrier permeable 
and non-permeable pharmaceutical compounds. This 

result therefore highlights the crucial role of effective 

feature engineering methodologies in improving model 

accuracy and overall predictive performance. 

Applicability domain 

In this study, binary classification-based ML models 

were designed to evaluate the blood-brain barrier 

(BBB) penetration potential of pharmaceutical 

compounds encompassing broad-spectrum chemical 

diversity. Since QSAR models are not universal, 

defining the applicability domain AD is essential to 

distinguish reliable interpolations from less reliable 
extrapolations. Following validation, the applicability 

domain of GBM classifier was analyzed through the 

PCA bounding box method. The first three principal 

components (PCs), derived from the ten most 

informative descriptors obtained, capture more than 

half of the total variance of the dataset26. As can be 

seen in Figure 4, test set observation points are colored 

in red and the molecular observations of training 

dataset are colored in blue. An analysis of the 

prediction reliability using PCA bonding box shows 

that only a few molecular observations reside outside 
the AD. This incorrect prediction could be a 

consequence of the oversampling method 

implementing by SMOTE algorithm that inserts 

synthetic examples on the original dataset. 

Consequently, it is assumed that the predictions for 3 

of the 346 compounds will be incorrect, thereby 

Validation 

scheme 
ML Models Q (%) Pr (%) Re (%) F (%) Sp (%) MCC 

Internal 

SVM 85.73 89.81 80.22 90.89 84.61 0.72 

k-NN 86.23 94.38 76.68 95.60 84.53 0.74 
CART-DT 77.68 85.07 67.35 88.04 74.76 0.57 

RF 91.74 93.19 89.92 93.52 91.50 0.84 
 GBM 92.90 94.84 90.61 95.09 92.65 0.86 

External 

SVM 84.10 88.34 80.00 88.55 83.97 0.69 
k-NN 83.24 96.21 70.56 96.99 81.41 0.69 

CART-DT 72.25 88.18 53.89 92.17 66.90 0.49 
RF 89.31 92.81 86.11 92.77 89.34 0.79 

 GBM 91.04 93.57 88.89 93.37 91.17 0.82 

No. Model Name 
Dataset shape 

(line x column) 
Q(%) 

SE / 

RE(%) 
SP(%) MCC AUC 

1 Light GBM1 1000 X 396 85.00 42.00 99.00 0.60 - 

2 Light GBM3 7162 X 1119 90.00 85.00 94.00 - 0.90 

3 LS/CU4 921 X 392 66.00 80.00 51.00 0.40 - 

4 Consensus KNN6 3884 X 2240 82.70 76.00 91.60 - - 

5 SVM7 1990 X 1874 92.90 93.70 90.70 0.83 - 

6 Model proposed 1726 X 10 91.04 88.89 91.17 0.82 1.00 
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suggesting that the selected model captures the 

majority of the information present in the ten 

informative features. Furthermore, this result reveals 

that the test set molecular observations exhibit a 

structural similarity greater than 99% to those in the 
training set molecular observations, confirming strong 

overlap between the two datasets and reliable 

representation within the applicability domain of 

classification-based ML models. 

 

 
Figure 4: Applicability domain assessment for 

training (blue) and test data (red) observations with 

the first three PCs representing more than 50% of 

total variance. PC1 captures 21.00% of the total 

variance in the data, PC2 captures 18.48%, and 

PC3 captures 12.39%. 

 

In conclusion, we can say that our models can be used 

with high accuracy to predict whether a compound can 

effectively penetrate the brain or not. 

Model comparisons 

Using a larger number of descriptors (features) when 

training machine-learning models can introduce several 

important drawbacks especially in drug discovery. 

Although the models display satisfactory predictive 

performance, binary classification approaches that 

incorporate a large number of descriptors are 

susceptible to overfitting and exhibit limited 

generalization to unseen data. This is because high-

dimensional descriptors often contain redundant or 

highly correlated variables, a phenomenon that is often 

referred to as the curse of dimensionality. Therefore, in 
our study, we trained our models with the few 

descriptors make it simpler to extract biological or 

chemical meaning from model outputs. Thus, the 

predictive capabilities of our binary classification-

based GBM model exceed those of previously 

published ML models for blood–brain barrier (BBB) 

penetration prediction, highlighting its improved 

accuracy and robustness (Table 6). 

Explaining ML model 
In recent years, the need for interpretable models has 

been increasingly recognized in research, industry, and 

regulatory contexts27. Given the potential risks of 

deploying opaque or “black box” models in clinical 

and preclinical applications, explainable artificial 

intelligence (XAI) approaches have become a top 

priority. The practice of XAI models is essential to 

justify predictive results and ensure the reliability, 

safety and transparency of preclinical or clinical 

decision-making28. In order to meet this objective, 

SHAP was developed and validated to interpret how 

the proposed GBM estimation algorithm predicts class 
labels for chemical compounds. Here, Tree-SHAP, a 

variant of SHAP algorithm, is applied to study the 

effect or influence of selected informative descriptors 

on the prediction of chemical class (BBB+ vs BBB-) of 

pharmaceutical compounds studied with GBM model. 

Thus, multiple visualization techniques can be applied 

to examine and illustrate the distribution of SHAP 

values, providing both local (instance-level) and global 

(model-level) explanations of the predictive behavior. 

As illustrated in Figure 5(a), a sample-wise SHAPE 

summary plot is employed to demonstrate which 
features are the most significant overall. In this plot, 

the x-axis represents the Shapley values, whereas the y-

axis lists the descriptors and their corresponding value 

distributions, sorted according to their mean absolute 

Shapley values, highlighting the relative importance of 

each feature. Each point represents a Shapley value 

corresponding to a specific molecular observation, with 

the color indicating the magnitude of the associated 

descriptor. As shown in the color bar, sky blue 

indicates the lowest values and magenta the highest. 

The descriptors are displayed along the y-axis in 

descending order of importance, reflecting their 
relative contribution to the model’s predictions29. With 

GBM classifier, averaged and centered Moreau-Broto 

autocorrelation of lag 0 weighted by Gasteiger charge 

(AATSCOc), geary coefficient of lag 2 weighted by 

Allred-Rochow EN (GATS2are) and geary coefficient 

of lag 1 weighted by Pauling EN (GATS1pe) are the 

top three important descriptors. 

 

 
Figure 5: Local and global explanation of the GBM classifier using SHAP values corresponding for the test 

dataset.  

(a) sample wise SHAP values; (b) mean SHAP value for each selected descriptor. 

 b 
 a 
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Furthermore, Figure 5(b) shows the MAS (mean 

absolute SHAP) value for specific informative 

descriptors, serving as a metric of feature importance. 

MAS values provide an effective measure of the effect 

of selected informative descriptors in decision making 
to classify a query compound. The more the mean 

absolute values, the more the selected descriptors 

influence overall in separating compounds into class 

BBB- vs class BBB+. This will help interpret the 

sample-wise SHAP values shown in Figure 5(a). 

Shapley values are a means to describe the influence of 

selected descriptors in the model prediction, and the 

direction of this influence can be determined using the 

positive or negative values assigned to a particular 

descriptor for each molecular observation29. As the 

SHAP values indicate the direction of the predictions 

(towards BBB- for negative values and towards BBB+ 
for positive values), it can be concluded that 

compounds with higher AATSCOc values decrease the 

probability of the BBB+ class, while lower values of 

this descriptor appear to increase the probability of the 

BBB+ class. In the other words, it appears that highly 

charged molecules, such as macromolecular drugs, 

recombinant proteins and nucleic acid, are not likely to 

cross the blood-brain barrier30. Electronegativity auto-

correlation is a graph-based molecular descriptor that 

quantifies how the electronegativity values of atoms in 

a molecule are correlated at a specific topological 
distance (number of bonds apart)24. In this work, 

GATS2are and GATS1pe are identified as the next 

most influential descriptors for predicting BBB 

permeability, reflecting electronegativity auto-

correlation. These two descriptors are slightly 

correlated with 𝑅2 = 0.4 because they reflect the same 

properties calculated in two different scales31. 

Electronegativity scale formulated by Pauling analyses 

or reflects single or multiple bond dissociation 

energies. And, as we can see in Figure 5(a), GBM 

classifier concludes that lower values of GATS1pe 

have high SHAP values. Therefore, the likelihood of 

BBB+ permeability increases as the amount of energy 
required to break a bond decreases. Electronegativity 

molecular property implemented in GATS2are uses the 

formulation of Allred and Rochow electronegativity 

that measures an atom’s tendency to attract electrons in 

a chemical bond. It defined in terms of the electrostatic 

force or Coulombic attraction exerted by the effective 

nuclear charge (𝑍𝑒𝑓𝑓) on valence electrons located at 

the covalent radius (𝑟𝑐𝑜𝑣) of the atom31. Therefore, the 

higher the effective nuclear charge of the atom, the 
higher the electronegativity. If atoms with a high 

electronegativity value are often connected at a 

distance d = 2 Å in the molecular graph, the value of 

the descriptor will be high and the autocorrelation will 

be strong, which will increase the probability of BBB+. 

Whilst the general trend between the top three 

descriptors values and the Shapley values allows for 

the identification of linear relationships, saturation 

effects emerge in the impact of these characteristics on 

the model's predictions. 

Limitations of the study 

The first limitation of this study is its dependence on a 
single dataset from Shaker et al.1 Although GBM 

classifier achieved strong predictive performance, its 

clinical or preclinical relevance remains limited by the 

dataset’s size and diversity. While the dataset provides 

a solid foundation for algorithm development, its 

restricted scope warrants caution when generalizing 
these findings to real-world settings3,6. The second 

limitation of this QSAR investigation pertains to the 

quality of the underlying data, which is inherently 

dependent on the accuracy and reliability of the 

molecular descriptors employed in model development. 

Molecular descriptors mathematically capture the 

chemical information embedded in molecular 

structures. As molecules may exist in various 

conformations, choosing the correct conformer is as 

important as selecting suitable descriptors, since 

conformational changes can alter descriptor values. 

Therefore, accurate molecular geometries are 
fundamental to constructing reliable QSAR models, 

particularly those employing quantum-chemical or 3D 

descriptors, as they ensure several benefits: (i) 

enhances data quality and model robustness; (ii) 

reduces overfitting and training complexity by 

avoiding the time-consuming hyper-parameter 

adjustment process; (iii) provides better biological 

relevance for structure–activity relationships and (iv) 

improves comparability and transparency of model 

development32. Another notable limitation of this study 

stems from the approach used to balance the dataset. 
Specifically, the application of the SMOTE algorithm, 

while effective in mitigating class imbalance, may 

introduce synthetic samples that do not fully represent 

the actual data distribution or the fit between the 

training and test data. This may increase the risk of 

overfitting and potentially distort class boundaries, thus 

affecting the generalizability of the model to 

unobserved data.  

 

CONCLUSIONS 

 

In this study, we developed non-animal predictive 
models to assess the ability of drug or pharmaceutical 

compounds to penetrate the blood–brain barrier (BBB), 

providing an alternative to traditional in vivo testing. 

The construction of robust and accurate predictive 

models necessitates the use of a dataset that is 

sufficiently large, chemically diverse, and well-

balanced across classes. Using ClustOfVar algorithm 

and correlation matrix technique, only 10 molecular 

informative descriptors of 1,726 (original and 

synthetic) compounds with different structures were 

used. Then, five binary machine learning classifiers 
(SVM, k-NN, CART-DT, RF and GBM) used to 

predict whether a query compound is BBB permeable 

or not were developed and validated using 10-fold 

cross-validation. Since with a large or very large 

number of descriptors the risk of likelihood of 

overfitting and unexplainability increases, our models 

were trained with the few descriptors to make it 

simpler to extract relevant biological or chemical 

meaning from model outputs. The accuracy of these 

classifiers ranged from 77.68 (±1.25) to 92.90% 

(±0.72), and the MCC ranged from 0.57(±0.02) to 

0.86 (±0.01) in internal cross-validation. The best 
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model, GBM, has a Q of 91.04%, a Pr of 93.57%, a Re 

of 88.89%, a F-score of 93.37%, a Sp of 91.17%, a 

MCC 0.82 and AUC of 1.0 in external validation 

demonstrating that the collection of few and more 

informative descriptors can more accurately distinguish 
whether pharmaceutical compound can cross the 

blood-brain barrier. Additionally, the SHAP 

interpretability framework was employed to enhance 

model transparency and to elucidate the relative 

importance of key molecular descriptors influencing 

prediction results. The SHAP analysis revealed that 

two primary factors, such as the spatial distribution of 

atomic charges and atomic electronegativity, play a 

critical role in determining BBB penetration 

predictions. Overall, the explainable GBM 

classification model developed in this study shows 

strong potential as a predictive and screening tool to 
identify drug candidates targeting the central nervous 

system (CNS) or having a better pharmacokinetic 

profile. 

 

ACKNOWLEDGEMENTS 

 

The authors wish to thank the Laboratory of 

Fundamental and Applied Physics (LFAP) at Nangui 

ABROGOUA University, Côte d’Ivoire, for making 

available the facilities that supported this research. 

 

AUTHOR’S CONTRIBUTION 

 

N’guessan A: performing the data collection, curation, 

the study, and writing the original draft. Mélèdje D:  

checking and correcting python code.  Akonan L:  

supervision methodology and intellectual input. 

Kouakou JLK: literature review, research analysis and 

data inspection. Moussé L:  formal analysis and 

conceptualization. Kéita M: formal analysis and 

conceptualization. Kré R: data investigation and 

intellectual input. Ziao N: supervision methodology 

and review. Megnassan E: formal analysis, 
supervision methodology and review. All authors have 

read and agreed to the published version of the 

manuscript. 

 

DATA AVAILABILITY 

 

The empirical data used to support the study's results 

can be obtained upon request from the corresponding 

author. 

 

CONFLICT OF INTEREST 

 

The authors declare that no conflict of interest is 

associated with this study. 

 

REFERENCES 
 

1. Shaker B, Lee J, Lee Y, et al. A machine learning-based 

quantitative model (LogBB_Pred) to predict the blood-brain 

barrier permeability (logBB value) of drug compounds. 

Bioinfo (Oxford, England) 2023; 39(10):btad577.  

https://doi.org/10.1093/bioinformatics/btad577 

2. Huang ETC, Yang JS, Liao KYK, et al. Predicting blood-

brain barrier permeability of molecules with a large 

language model and machine learning. Sci Repo 

2024;14(1):15844.  

https://doi.org/10.1038/s41598-024-66897-y 

3. Shaker B, Yu MS, Song JS, et al. Light BBB: 

Computational prediction model of blood–brain-barrier 

penetration based on LightGBM. Bioinfo 2021;37(8):1135–

1139. https://doi.org/10.1093/bioinformatics/btaa918 

4. Faramarzi S, Kim MT, Volpe DA, et al. Development of 

QSAR models to predict blood-brain barrier permeability. 

Front Pharm 2022;13:1040838. 

https://doi.org/10.3389/fphar.2022.1040838 

5. Singh M, Divakaran R, Konda LSK, et al. A classification 

model for blood brain barrier penetration. J Mole Graph 

Model 2020; 96:107516. PMID: 31940508 

https://doi.org/10.1016/j.jmgm.2019.107516                                    

6. Mauri A, Bertola M. Alvascience: A new software suite for 

the qsar workflow applied to the blood–brain barrier 

permeability. Int J Mol Sci 2022;23(21):12882.  

https://doi.org/10.3390/ijms232112882 

7. Yuan Y, Zheng F, Zhan CG. Improved prediction of blood-

brain barrier permeability through machine learning with 

combined use of molecular property-based descriptors and 

fingerprints. AAPS J 2018;20(3):54.  

https://doi.org/10.1208/s12248-018-0215-8 

8. Wang Z, Yang H, Wu Z, et al. In-silico prediction of blood-

brain barrier permeability of compounds by machine 

learning and resampling methods. Chem Med Chem 

2018;13(20):2189-2201. 

https://doi.org/10.1002/cmdc.201800533 

9. N'guessan A, Dali B, Esmel EA, et al. Pollution risk 

assessment by designing predictive binary classification 

models of substituted benzenes centered on data mining and 

machine learning techniques. Env Sci Pollu Res Int 

2025;32(35):21092–21116. 

https://doi.org/10.1007/s11356-025-36874-7 

10. Chavent M, Kuentz-Simonet V, Liquet B, Saracco J. 

Clustofvar: An r package for the clustering of variables. J 

Stat Soft 2012; 50(13):1-16. 

https://www.jstatsoft.org/index.php/jss/article/view/v050i13 

11. Singh D, Singh B. Investigating the impact of data 

normalization on classification performance. App Soft 

Comp 2020;97:105524.  

https://doi.org/10.1016/j.asoc.2019.105524 

12. Pedregosa, Fabian, et al. Scikit-learn: Machine learning in 

python. J Mac Learn Res 2011 ;12: 2825-2830. 

13. Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: 

Synthetic minority over-sampling technique. J Arti Intel 

Res 2002;16:321-357. https://doi.org/10.1613/jair.953 

14. Wood DJ, Carlsson L, Eklund M, Norinder U, Stålring J 

Wood, David J. et al. QSAR with experimental and 

predictive distributions: an information theoretic approach 

for assessing model quality. J Computer-Aided Mol Design 

2013; 27 (3): 203–219.  

http://dx.doi.org/10.1007/s10822-013-9639-5  

15. Kar S, Roy K, Leszczynski J. Applicability Domain: A Step 

Toward Confident Predictions and Decidability for QSAR 

Modeling. In Methods in Molecular Biology 2018;141–169. 

Springer New York.  

https://doi.org/10.1007/978-1-4939-7899-1_6 

16. Cortes C, Vapnik V. Support-vector networks. Mach Learn 

1995; 20:273-297. 

https://doi.org/10.1007/BF00994018 

17. Peterson LE. K-nearest neighbors. Scholar 2009;4(2):1883. 

https://doi.org/10.4249/scholarpedia.1883 

18. Patel BR, Rana KK. A survey on decision tree algorithm for 

classification. Int J Eng Dev Res 2014;2(1):1-5. 

https://rjwave.org/IJEDR/papers/IJEDR1401001 

19. Hastie T, Tibshirani R, Friedman J. Boosting and additive 

trees. In: The elements of statistical learning. Sprin Seri 

Statis 2009;337-387.  

https://doi.org/10.1007/978-0-387-84858-7_10 

20. Arrieta AB, Díaz-Rodríguez N, Del Ser J, et al. Explainable 

artificial intelligence (XAI): Concepts, taxonomies, 

http://www.ujpr.org/
https://doi.org/10.1613/jair.953
http://dx.doi.org/10.1007/s10822-013-9639-5
https://doi.org/10.1007/978-1-4939-7899-1_6


N’guessan et al.,                                                Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20   

ISSN: 2456-8058                                                                20                                                    CODEN (USA): UJPRA3 

opportunities and challenges toward responsible AI. Inform 

Fusion 2020;58 :82-115.  

https://doi.org/10.1016/j.inffus.2019.12.012 

21. Lundberg SM, Lee SI. A unified approach to interpreting 

model predictions. Adv Neur Inform Process Sys 2017;30.  

https://arxiv.org/abs/1705.07874 

22. Lundberg SM, Erion G, Chen H et al. From local 

explanations to global understanding with explainable AI 

for trees. Nat Mach Intel 2020;2(1):56–67. 

https://doi.org/10.1038/s42256-019-0138-9 

23. Dehnbostel FO, Dixit VA, Preissner R, et al. Non-animal 

models for blood–brain barrier permeability evaluation of 

drug-like compounds. Sci Repo 2024;14:8908. 

https://doi.org/10.1038/s41598-024-59734-9 

24. Puzyn T, Leszczyński J, Cronin MTD. Recent advances in 

QSAR studies: Methods and applications. Springer 2010. 

https://doi.org/10.1007/978-1-4020-9783-6 

25. Roy K, Mitra I. Electrotopological state atom (E-state) 

index in drug design, QSAR, property prediction and 

toxicity assessment. Curr Comp Aid Drug Des 

2012;8(2):135-158. 

https://doi.org/10.2174/157340912800492366 

26. Kar S, Roy K, Leszczynski J. Applicability domain: A step 

toward confident predictions and decidability for 

qsarmodeling. In: Nicolotti, o. (eds) Comp Toxi Meth Mole 

Bio 2018;1800. 

https://doi.org/10.1007/978-1-4939-7899-1_6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27. De P, Kar S, Ambure P, et al. Prediction reliability of 

QSAR models: An overview of various validation tools. 

Arch Toxic 2022; 96(5):1279-1295.  

https://doi.org/doi:10.1007/s00204-022-03252-y 

28. Qadri YA, Shaikh S, Ahmad K, et al. Explainable artificial 

intelligence: A perspective on drug discovery. Pharma 

2025; 17(9):1119. 

 https://doi.org/10.3390/pharmaceutics17091119 

29. Ponce-Bobadilla AV, Schmitt V, Maier CS, et al. Practical 

guide to SHAP analysis: Explaining supervised machine 

learning model predictions in drug development. Clin 

Transl Sci 2024;17(11):e70056.  

https://doi.org/10.1111/cts.70056 

30. Pardridge WM. Blood-brain barrier and delivery of protein 

and gene therapeutics to brain. Front Agi Neuro 

2019;11:373.  

https://doi.org/10.3389/fnagi.2019.00373 

31. Lang PF. Revisiting electronegativity and electronegativity 

scales. J Chem Edu 2024;102(1):424–29.  

https://doi.org/10.1021/acs.jchemed.4c01353 

32. Önlü S, ürker Saçan M. Impact of geometry optimization 

methods on QSAR modelling: A case study for predicting 

human serum albumin binding affinity. SAR and QSAR in 

Environmental Research 2017; 28(6): 491–509. 

https://doi.org/10.1080/1062936X.2017.1343253   

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

                                                             
 

 

http://www.ujpr.org/
https://doi.org/10.1007/978-1-4939-7899-1_6
https://doi.org/10.1021/acs.jchemed.4c01353
https://doi.org/10.1080/1062936X.2017.1343253

	TITLE
	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS AND DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	AUTHOR’S CONTRIBUTION
	DATA AVAILABILITY
	CONFLICT OF INTEREST
	REFERENCES

