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Abstract

Background: Designing pharmaceutical compounds to treat brain diseases, or
drugs that interact with biological targets in peripheral organs without penetrating
the blood-brain barrier, remains a very difficult task. It is evident that animal
models are costly and unproductive; therefore, the pharmaceutical industries and/or
regulatory bodies need reliable, accurate and interpretable predictive tools to assess
the permeability of pharmaceutical compounds across the blood-brain barrier.
Method: This study proposes the development of artificial intelligence models
characterized by greater accuracy and enhanced explanatory capacity, in the
context of binary classification of blood-brain barrier permeability of drug
candidate compounds. By applying a resampling approach and clustering
technique, we developed five distinct artificial intelligence models support vector
machine, k-nearest neighbor, classification and regression decision tree, random
forest, and gradient boosting machine using only 10 molecular descriptors and a
dataset of 1,726 molecular observations (comprising 1,000 originals and 726
synthetic compounds).

Results: Of all the models evaluated, Gradient Boosting Machine had the best 10-
fold cross-validation statistics, achieving prediction accuracy (Q), MCC and AUC
of 91.04%, 0.82 and 1.0 on the external test set respectively. The gradient boosting
machine outputs are explained using Shapley additive explanation approach. This
method allows the main modeling descriptors involved in predicting blood-brain
barrier permeability to be ranked in order of importance.

Conclusion: Non-animal predictive models were designed to determine whether
pharmaceutical compounds can penetrate the blood—brain barrier. The proposed
model reached a reliable level of accuracy sufficient to prove extremely useful for
virtual screening of large pharmaceutical compounds libraries. It revealed two key
indicators for predictions: spatial distribution of atomic charges and electro
negativity.

Keywords: blood-brain barrier permeability; curse of dimensionality, explainable
Al, logBB, machine learning, QSAR.

INTRODUCTION

The blood-brain barrier (BBB) can be defined as a
semi-permeable barrier to
circulatory system. Its main role is to maintain the

highly selective,
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homeostasis of the central nervous system (CNS), by
isolating the brain from systemic blood circulation.
This isolation protects the CNS from the damaging
effects of harmful substances’. Although the BBB is
defensive in nature, the inability of drug candidates to

the
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cross it remains challenging. Correct administration of
these drugs is therefore essential for treating diseases
of the central nervous system (CNS), such as
Alzheimer's disease, Parkinson's disease or CNS
infections, which act directly on specific targets in the
brain’.  Furthermore, pharmaceutical compounds
designed to interact with their molecular targets in
peripheral organs must not cross the blood-brain barrier
(BBB), in order to avoid side effects in the central
nervous system (CNS). Many drug candidates have
failed to reach the market due to a poor
pharmacokinetic profile. In both cases, it is essential to
have a clear idea of whether pharmaceutical compound
candidates can cross the blood-brain barrier (BBB),
which is crucial for the research and development of
new treatments.

Experimental determination of brain permeability
provides more reliable data. However, its
implementation remains complex, time-consuming and
expensive, and requires access to highly sophisticated
laboratory facilities, particularly in terms of equipment
and animal resources'.This dynamic has led to a
growing need for predictive models that are reliable,
efficient and easy to use. In this context, quantitative
structure-activity relationship (QSAR) tools have
proved to be relevant solutions for rapidly and
efficiently predicting or estimating the blood-brain
barrier (BBB) permeability of drug compounds.
Indeed, QSAR relies on theoretical and computational
methodologies to predict BBB penetration faster,
cheaper and easier. Various model building tools used
in QSAR have been satisfactorily implemented by
researchers and in these approaches the development of
artificial intelligence (Al) and its subfield machine
learning (ML) techniques have been successfully used
to predict whether a query compound is BBB
permeable or not.

To date, several QSAR models that predict BBB
permeability, grouped into two main categories,
classification and regression, have been satisfactorily
implemented by authors using machine learning
techniques. As part of the research carried out by
Shaker et al.!, classification and regression models
were developed with the aim of predicting both the
class (permeable or non-permeable) and the
concentration ratio of the drug compound in the brain
to the compound in the blood, provided by logBB .The
researchers designed and refined their models using a
selection of machine learning algorithms, namely Light
GBM, RF, k-NN, MLR, SVM, AdaBoost, XGBoost
and ANN. The best LightGBM regression prediction
model called LogBB_Pred for the test set showed an R?
of 0.61 and mean square error (MSE) of 0.36.
Implemented as classification, LogBB_Pred achieved
on the independent test dataset an accuracy (Q) of
85%, an MCC (Mathews Correlation Coefficient) of
0.60, and a positive predictive value (PPV) of 1.0%
Two years previously, they used 1,119 molecular
features for training and testing LightGBM machine
algorithm to a large dataset of 7,162 compounds for the
BBB permeability prediction with an accuracy of 89%,
an area under the curve (AUC) of 0.93, specificity (Sp)
of 0.77, and sensitivity (Se) of 0.93, when ten-fold
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cross-validation was performed®. Faramarzi and
coworkers constructed two distinct binary QSAR
models for logBB permeability prediction using 392
medicinal chemistry structural descriptors with a
training set of 921 compounds’. The combined
predictive performance of the two models obtained
achieved an accuracy of 66 %, a sensitivity (Se) of
80%, a negative predictive value (NPV) of 70%, an Sp
of 51%, a PPV of 64% and an MCC of 0.4. Singh et
al’, employed three different machine-learning
algorithms (RF, MLP, SVM) with descriptors and
fingerprints calculated using PaDEL-Descriptorv2.21.
They curated a dataset of 605 compounds and trained
two classification models, based on two thresholds,
with 389 2D molecular descriptors. The best-obtained
consensus model achieved good predictive accuracies.
Mauri et al., attempted to estimate propensity of
compounds to penetrate the BBB by training k-NN
machine learning model using a dataset of 3,884
molecules, 2,239 molecular descriptors including 166
MACCS fingerprints, 2048 bits EFCP and 9 features.
Their best consensus model showed good evaluation
metrics (Q=82.7%, Se=76%, Sp=91.6%)°. Yuan et al.,
developed SVM-based BBB permeability prediction
models using a larger dataset of 1,990 compounds with
1,874 molecular descriptors and five different types of
fragment descriptors ranging from 307 to 4860 bit. The
best prediction accuracies, ranging from 94.9 to 97.5%,
were obtained by combining the use of property-based
descriptors and fingerprints’. Although highly accurate,
these models share the same shortcomings: a large or
very large number of descriptors, increasing the
likelihood of overfitting and unexplainability.
Furthermore, the classification models were built using
unbalanced datasets, resulting in a high rate of false
positives, creating models that failed to save
experimental costs®.

Given these critical deficiencies in building more
reliable machine learning models, we implemented
hierarchical clustering of descriptors using the
ClustOfvar algorithm provided by the R programming
software to solve the problem of the curse of
dimensionality caused by the large number of
descriptors used. To improve the accuracy of our
model, we used a resampling method based on SMOTE
(Synthetic Minority Oversampling Technique), which
uses information from the data to generate synthetic
samples from the minority class®. In addition to the
performance of model, it is its explicability that is a
determining factor for the implementation of
computational methods in the field of pharmaceutical
research. In this work, the shapley additive
explanations (SHAP) values were used to explain the
best proposed black box model predictions at both local
and global levels to identify the significant molecular
descriptors that influence BBB permeability prediction.

MATERIALS AND METHODS
Data collection
In the field of QSAR modeling, binary classification is

the process of classifying compounds on the basis of
two predefined classes. Here, observations or
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compounds were divided into two classes using logBB
as a criterion: BBB+ (substances that tend to cross the
BBB) if logBB> —1 or BBB- (substances that do not
tend to cross the BBB) if logBB< —1, respectively. In
our binary BBB permeability prediction investigation,
the dataset was obtained and integrated from a previous
study’. In their study, they collected the largest logBB
data set of 1000 organic compounds separated in a
training set of 913 compounds, a validation set of 27

compounds and additional  molecules  from
MedChemExpress
(https://mww.medchemexpress.com/). In binary

classification modelling, the next crucial step is to
transform the compounds into vectors of physical and
chemical properties. These vectors are determined from
the chemical structures represented in SMILES
(Simple Molecular Input Layer) format. In this study,
for each compound of the final dataset, 919 structural
2- and 3-D descriptors have been calculated using
Mordred software; a publicly molecular descriptors
calculator. Thus, the entire data set of our study,
consisting of a 1000X920 matrix, obtained from
Shaker and coworkers’ study stands as starting point
for the development of our QSAR models for the BBB
permeability prediction®.

Feature selection methods

Increasing the number of descriptors amplifies the
effect of the error terms, and consequently increases
the correlation between the explanatory variables, with
potentially spurious results. In machine learning,
feature selection plays a crucial role. It aims to reduce
the size of the feature space, speed up the learning
process, improve accuracy and make the learning
results more explainable. In this work, the hierarchical
clustering algorithm, implemented in the hclustvar
function of the R package ClustOfvar, was used for
partitioning or clustering the chemical descriptors'.
Based on the PCAMIX method, a principal component
analysis for a mixture of p1 quantitative ({xy, ..., x,1})
and p2 qualitative ({y;,..,¥,,}) variables, the
hclustvar function calculates synthetic quantitative
variables that summarize as well as possible the
variables in the clusters of the partition obtained. As
described by Chavent et al.'°, the synthetic variable sk
is defined as the quantitative variable most related to
all variables in cluster Ck:

_ 2 2 (- 191
Sk = argmaquR"{ Z Tix; Z 77u|yj} = Vnudcy

xjE€Ck YVi€Ck
o)

Where uj, is the first eigenvector of U, matrix, A,
represents the first eigenvalue of D, matrix, n is
observation number, 72 represents the squared Pearson
correlation for the quantitative variables and 5?2, the
correlation ratio for the qualitative variables'’. The two
previous matrices (U, and D,) are obtained after
singular value decomposition(SVD) of the matrix M,
obtained by concatenating two matrices corresponding
to the quantitative and qualitative data matrices X, and
Y,, respectively, with their standardized versions X,
and Y,

ISSN: 2456-8058

10

Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20

M, = J%(Xlek) = U, D VT )
The concept of hierarchical grouping of variables is
applied to machine learning and data analysis methods.
This methodical approach is based on the construction
of a nested tree hierarchy, which is built from a set of
variables. These approaches organize descriptors or
variables into hierarchical representations in which the
clusters at each level of the hierarchy are created by
merging the clusters at the level immediately below™.
To build a hierarchy of p = p1+p2 variables, hclustvar
function optimizes two homogeneity functions. The
first homogeneity function h (Eq.3) measures adequacy
between the variables in the cluster Ck and its central
synthetic quantitative and/or qualitative variable:
h(Ck) = ijeck rxzj,sk + Zyjeck Tl?,dy,- = Aik (3)

The second function, H, defined as the sum of the
homogeneities applied to the k clusters of the partition
Py, is obtained as follows:

H(P) = Zph(C) = Ay + -+ L (8)
Finally, two clusters (C; and C,) are aggregated by
choosing the smallest aggregation criterion, d, defined
as:

d(Cy,C) = h(Cy) + h(Cy) — h(CL U Cp) = A4y +Ag, —
Aélucz (5)
The maximum of the second homogeneity function (H)
is reached when this procedure is repeated among all
the remaining groups. As a result, once the recursive
algorithm has been completed, a new partition is
generated. The hclustvar function also provides a
boostrap process to obtain the appropriate number of
clusters. This is evaluated by the stability of the p-
nested partitions of the resulting dendrogram, since
each variable is considered as a cluster at the start’.
Data set standardizing
The standardization of data sets is of crucial
importance for the optimal operation of machine
learning algorithms. Such algorithms or estimators may
exhibit suboptimal performance if the features do not
resemble standard normal data (mean of 0 and a
standard deviation of 1). Given that the range of values
in the raw data varies considerably, the input variables
need to be normalized so that higher numerical values
do not dominate lower numerical values, while
preserving the full informational structure of the data
being studied'’. The normalization procedure is carried
out autonomously for each feature, which requires the
relevant statistics to be calculated on the samples in the
dataset. In this study, the standard Z-score of feature X
is computed as follows:
Z="%(6)
Where p and o stand for the average and standard
deviation value of descriptor X respectively. In this
work, we use StandardScaler protocol offered by
python scikit-learn module’?.
Data balancing
As our dataset is imbalanced, we use the Synthetic
Minority Oversampling Technique (SMOTE) provided
by python imbalanced-learn module to have same ratio
of target variable. In most cases, conventional machine
learning algorithms are not suited to this type of
dataset. This is because they favor samples from the
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majority class, which results in poor predictive
accuracy for the minority class and limited
generalization capability. SMOTE is a popular

oversampling approach that handles imbalance by
analyzing minority class similarity in near-neighbor
feature space and generating new synthetic minority
data into the original set. This methodological
approach involves inserting synthetic examples along
line segments linking all the k nearest neighbors of the
minority sample, where k =5%. A synthetic sample, Xs,
was generated by selecting a minority instance, X,
identifying its k nearest neighbors using Euclidean
distance, and constructing a vector toward one
neighbor, x¢. This vector was scaled by a random
coefficient «(0,1) and added to x°. The resulting
process of minority class synthesis is summarized by
the following equation:

Xs = x; +a(x; — xp) ()
Handling data balancing and applicability domain
(AD) with statistical methods
QSAR models are mathematical representations that
correlate the biological or physicochemical responses
of compounds with their structural and molecular
descriptors generally expressed as numerical values.
Although each numerical value is an individual data
point, the data distribution, on the other hand, provides
insight into the underlying statistical behavior of the
descriptors considered for all molecular observations,
thus describing how these values are distributed,
concentrated, or shaped in the dataset. In this study, the
Synthetic Minority Oversampling Technique (SMOTE)
was employed to augment and balance the dataset by
generating additional samples for the underrepresented
class. To ensure that the synthetic data accurately
reflect the distribution of the original experimental
data, the Jensen—Shannon Distance (JSD), a robust and
widely used statistical measure, was calculated to
assess the similarity between the two datasets”*.The
JSD that measures the degree of overlap or
dissimilarity between two distributions P and Q as
defined mathematically as follows:

1 1
I$XRQ)=JEKMPHM)+EKMQHD® ®)
Where

M=2(P+0) ©
M is a mixed distribution of the P and Q distributions;
KL(‘||") represents the Kullback-Leibler divergence.
After the quantitative comparison with JSD score,
kernel density estimation (KDE) was applied to derive
the corresponding probability density functions,
enabling a qualitative assessment of the data
distributions. This method was successfully employed
in previous work®.

PCA is a linear statistical transformation technique that
projects all data (observations and variables) into a
lower-dimensional orthogonal space defined by
principal components (PCs), which successively
capture a significant portion of the information or
variance of the original dataset’. The PCA bounding
box method, categorized among range-based and
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geometric approaches, is one of several techniques

proposed for defining the applicability domain (AD) of

QSAR models. An ideal AD approach should delineate

the interpolation regions within a multivariate

descriptor space, ensuring reliable model predictions
for compounds structurally similar to those in the
training set"™.

Following the completion of all data processing steps,

the data must be split prior to executing machine

learning methods. The training and validation sets were
selected at random using the train_test_split function
from the sklearn python (version 3.9.2) library. The

value assigned to the test set size parameter is 0.2,

which is defined as 80% for training and 20% for

validation or test subsets with the shuffled option*?.

Model implementation

This work applied five machine learning estimators

namely SVM, k-NN, CART-DT, RF, and GBM

implemented with the scikit-learn package (Python

3.9.2) to model and predict the BBB permeability of

drug molecules*?.

1. The support vector machine (SVM) is a supervised
learning algorithm applied to both classification and
regression problems. The fundamental objective of
this process is to determine an optimal hyperplane
that separates at most two classes in a p-
dimensional feature space. This improves the
overall ability of the model to generalize when
dealing with unknown data'®. For a dataset of
labeled pairs (x4, y,) (%, V) Where x; € RP
and y; € {—1,1}, the decision function or optimal
separating hyper plane: g(x) =w'x; +bis
obtained by estimating the weight vector wT =
Wy v w,,) and the intercept b. For linear SVM,
support vectors x; that meet the conditions w”x; +
b =1and w'x; + b = —1, define the outer limits
of the two classes, and the separation distance

between these two hyperplanes given by, ﬁ is

maximized. Once the parameters w and b have been
determined, any input vector x; can be classified
using the function: sign[w”x; + b]; a positive
result assigns the sample to the positive class
(BBB+), while a negative value corresponds to the
negative class (BBB-).When the training data is not
linearly separable, a non-linear SVM projects the
input vectors into a higher dimensional feature
space using a kernel function. The radial Gaussian
basis function (RBF) kernel is a common choice
defined as follows:

K (x;,%;) = exp (_V”xi - xj”z)

Where y is the kernel parameter.

2. k-nearest neighbors (k-NN) algorithm is a
supervised non-parametric approach used for both
classification and regression modeling. Unlike
parametric methods, it assumes no underlying data
distribution. For a given input, x;, the algorithm
identifies the k-nearest training data points
according to a predefined distance metric and
assigns a class label or predicted value based on the
majority vote or average response of these
neighbors. In the present study, the nearness is

(10)
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measured by the Euclidean distance between x;
and x;, as follows:

d(xj,xk) = ||x]- — xk”2 11)

The 1-NN algorithm represents the simplest form of k-
NN, where only one neighbor is considered. The input
X; is classified by assigning it the same label as its
nearest sample'’.
A decision tree (DT) can be defined as a flexible
supervised learning algorithm that is used for
classification and regression, based on the division
of the data. The process of partitioning the data,
which is carried out recursively, involves
subdividing the dataset according to the feature that
allows the most efficient division at each stage.
This approach results in a hierarchical tree
structure, where internal nodes represent feature-
based decisions and leaf nodes correspond to final
predictions. Over the last few decades, a set of
algorithmic methods dedicated to the construction
of decision trees has emerged. The aim of these
algorithms is twofold: firstly, to increase the
accuracy of the models, and secondly, to adapt to
the diversity of data sources’®. Among them an
optimized version of CART (Classification and
Regression Tree), implemented as Decision Tree
Classifier, is available in scikit-learn python
package.
The Random Forest (RF) algorithm is an ensemble-
based machine learning approach that aggregates
the predictions of multiple decision trees to
improve accuracy and minimize overfitting. The
tree generation process relies on random sampling
of subsets of the training data and features available
for each tree. This random process has the effect of
increasing model diversity and consolidating
generalization performance. During prediction,
each tree contributes to a result. The final result is
obtained by averaging the predictions in regression
tasks or by applying majority voting in
classification. As a result, Random Forest models
demonstrate greater robustness and generalization
capability than individual decision trees.
The concept of “boost” refers to a set of algorithms
designed to optimize the predictive capabilities of a
learning system by increasing its performance, from
weak to strong. Intuitively, these algorithms merge
a number of weak performance learnings into a
single strong performance model, significantly
improving the results. Thus, boosting algorithms
work by sequentially training a set of weak learning
models and combining them for prediction where
subsequent learners focus more on the errors of
previous learners improving prediction performance
to ultimately obtain, through this model, strong
learners. The superiority of boosting lies in its serial
learning nature, which enables excellent
approximation and generalization'®. Among the
various kinds of boosting approaches, the highly
effective tree boosting methods, Gradient Boosting
Machine (GBM), have been used for binary
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classification-based QSAR models of

permeability predictions.
Binary classification assessment methods
Internal 10 fold cross-validation scheme was applied to
the training dataset in order to identify the models with
the best predictive performance. The final evaluation of
the classifiers was carried out using an independent test
set, the aim of which was to assess their generalization
capability. For binary classification performance
evaluation, several scalar measures were considered,
including accuracy (Q), precision (Pr), recall (Re),
specificity (Sp), F-score (F) and Matthews correlation
coefficient (MCC). These measures are defined
mathematically as follows:

TP+ TN
Q(%) = 100 x

logBB

TP+ TN + FN + FP (12)
Pr(%) = 100 X —
r(%) = 100X 751N (13)
Re(%) = 100 x —
e(%) = 100X 757 ey (14)
F(%) = 100 x ——2 TP
(%) =100 X o= TN+ TP + FP (15)
Sp(%) = 100 X —
p(%) = TN + FP (16)
MCC
TN x TP — FP x FN
= 17)

J(TP+FP)(TP + FN)(TN + FP)(TN + FN)

The quantities TP, FN, TN and FP are defined as true
positives, false negatives, true negatives and false
positives respectively. Beyond standard metrics, model
performance was also assessed using the receiver
operating characteristic (ROC) curve and its associated
area under the curve (AUC), which provides a
summary measure of classification accuracy.

Models explainability

“Black box” models are characterized by their inability
to provide decisions that can be clearly interpreted
and/or explained. Transparent models, on the other
hand, have the ability to allow direct understanding of
their internal reasoning. In drug research, for example,
the explainability of models plays a crucial role, as the
decisions taken must be justifiable. Interpretability is
therefore just as important as the accuracy of
predictions®. In recent years, Lundberg and Lee have
developed a unified framework for interpretability
prediction namely SHAP  (SHapley Additive
exPlanations)®. This explanation model suggests
taking an additive feature contribution method as a
weighted sum of the binary features:

M
g9(z") = ¢, +Z¢izi,
=1

With M, the number of simp_lified input features, z' €
{0,13" and the shapely values (weights) are defined as
follow:

(18)
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MM =1zl — 1!
b=y EEU D, o

M!
z'cx!

_fx(zl\i)]
Where f is the original model, |z'|is the number of
non-zero entries in z', and z' < x'represents all
z 'vectors where the non-zero entries are a subset of the
non-zero entries in a simplified input x'. According to
Lundberg et al., only one possible explanation model g
satisfies equation 18 and three properties (local
accuracy, missingness and consistency)**. SHAP, based
on a concept from the field of cooperative game theory
(Eq.19), provides model transparency for any machine-
learning algorithm to define feature influence at the
individual prediction level (i.e., local interpretability).
In the perspective of BBB permeability prediction,
Shapley values are assigned to each feature in order to
estimate their importance and the direction of their
impact for a particular prediction. Strongly positive
SHAP values indicate that the molecular descriptor
helps to predict molecules that cross the BBB, whereas
strongly negative SHAP values indicate that the
molecular descriptor helps to predict molecules that do
not cross the BBB. Several variants of the SHAP
algorithm have been reported: Kernel SHAP (model-
agnostic), Tree SHAP (specifically applicable to model
derived from trees) and Deep SHAP (specialized for
deep learning models). Model explanation and analysis
were performed using the SHAP package in Python (v.
0.43.0), which enables the quantification of each

contribution of feature to model predictions®*.

(19)

RESULTS AND DISCUSSION

Data set distribution analysis

According to data gathered from published studies, a
total of 1,000 compounds linked to BBB permeability
were compiled with 137 BBB- and 863 BBB+ after
data separation. The chemical diversity of the
compounds used in both the training and external
validation sets was extensively analyzed by Shaker and
coworkers to support the construction of a robust and
reliable binary classification model. Thus, similar
compounds were discarded on the basis of Tanimoto
similarity, preserving the uniqueness of the compounds
and avoiding biased and over fitted models with an
abundance of similar compounds®. The success of the
machine-learning algorithms depends on the quality of
the data in order to obtain a generalized predictive
model of the classification problem. Therefore, to
ensure optimum data quality and optimize the
performance of the machine learning models, a
rigorous normalization procedure was implemented.
This involved centering each feature around a mean
equal to zero and scaling it to a standard deviation of
one. Like redundancy and non-standardizing,
unbalanced datasets have a serious impact on the
optimization performance of binary classification
machine learning models. Thus, using the SMOTE
method, we obtained 1,726 compounds (1000
evaluated chemicals and 726 synthethic compounds),
divided into two balanced groups for the
implementation of models to assess the ability of drugs

ISSN: 2456-8058

13

Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20

to penetrate the BBB. Three hundred and forty-six
(346) molecules (166 BBB- and 180 BBB+) serve as
the test set to evaluate the generalization ability and
reliability of the model and the remaining 1,380
molecules were used to build the prediction models,
which were divided into 697 BBB+ and 683 BBB.
Feature involved in models

Feature selection methods have been wused for
dimension reduction, and this technique is essential for
mitigating the effects of the curse of dimensionality
and improving the performance of algorithms®. The
tree-like diagram, constructed using squared Pearson
correlation coefficients, was divided horizontally to
form forty (40) clusters of descriptors, each containing
strongly  correlated variables  sharing  similar
information’®. After grouping the descriptors, we
selected one variable from each group, i.e. the one that
best correlated with its centroid. Thus, the gain in
cohesion was 50.77%. This percentage measures the
correspondence between the descriptors of the cluster
and its centroid (the first PC obtained by applying PCA
to it). ClustOfVar algorithm for detecting a partition
extracted from a tree-like diagram obtained by
hierarchical representation of quantitative variables
have been used. Each stage of the hierarchy is thus
created by successively merging the clusters of the
lower stage. This merge is initiated by the lowest stage
with the most homogeneous partition, i.e. the partition
whose cluster contains only one variable'®. The
difference between PCA and our clustering method
built using the ClustOfvar algorithm is that the
centroids of the obtained clusters can be correlated.
Therefore, the correlation matrix of the 40 descriptors
was performed to detect residual correlations, which
could negatively affect the models by increasing
variance. Finally, after removing redundant, non-
informative and irrelevant descriptors from the original
high-dimensional dataset, we obtained 10 informative
descriptors for BBB permeability prediction. The
correlation matrix of the ten most informative and best
selected descriptors was then constructed using the
method described by N’guessan et al.’

VSA EStates 1 0.4 03 04
AATSCOG 03 -04 -008 08
ATSCSpe 02 01 o008

03 02 [u\ 01 02

GATS 1pe RICIEE
ATSC3pe [ 0008 007 0089
4 S

03

Figure 1: Correlation matrix of 10 non-redundant
and informative selected descriptors.

It appears highly improbable that any of the selected
descriptors will be correlated with another, with all R2
measuring no more than 0.40 (Figure 1). This suggests
that multi-collinearity, a consequence of the curse of
dimensionality, has been addressed.

CODEN (USA): UJPRA3


http://www.ujpr.org/

N’guessan et al.,

Table 1 shows the 10 molecular descriptors obtained
using a data mining procedure that integrates
hierarchical clustering and correlation-based analysis.
This approach allows us to assess both the strength and
direction of relationships between variables. These
descriptors are similar to those used in previously
published qualitative QSAR models designed to predict
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the permeability of pharmaceutical compounds across
the blood-brain barrier’?. As shown in Table 1, a large
proportion of the obtained descriptors belong to the
autocorrelation descriptor class, with descriptors
VSA_Estate8, AATSCOc, ATSC5pe, GATSlpe,
ATSC3pe, and GATS2are.

Table 1: Molecular descriptors using in this work.

No  Descriptors  Description

1 VSA_Estate8

Van der Waals surface area_electrotopological State 8
Averaged and centered Moreau-Broto autocorrelation of lag 0 weighted

Moran autocorrelation - lag 2 / weighted by Sanderson electronegativities

Geary coefficient of lag 1 weighted by Pauling EN
Centered Moreau-Broto autocorrelation of lag 3 weighted by Pauling EN

Geary coefficient of lag 2 weighted by Allred-Rochow EN

2 AATSCOc
by Gasteiger charge
3 ATSCbpe
4 GATS1pe
5 ATSC3pe
6 SdO Sum of atom-type E-State: =O
7 SsssN Sum of atom-type E-State: >N-
8 GATS2are
9 nRot Rotatable bonds count
10 n5ing Number of 5-membered rings

In molecular modelling and QSAR, it is common
practice to use autocorrelation descriptors to describe
how the physicochemical properties of molecules vary
according to their spatial distribution structure. These
descriptors are derived from a conceptual partitioning
of the structure of the molecule and the application of
an autocorrelation  function. Typically, spatial
autocorrelation  descriptors are  computed by
considering the atoms of a molecule as discrete spatial
points, with an atomic property assigned to each point.
The descriptors are then weighted according to
physicochemical parameters such as atomic weight,
volume of van der Waals of considered atom, atomic
electronegativity, atomic polarizability, atomic charge,
or covalent radius®. In this work, E-state indices (SdO
and SsssN) that encode electronic and topological
environment of each atom are used as the most
informative descriptors in classification-based QSAR
models predicting blood-brain barrier permeability
(logBB)®.

Class imbalance handling

As indicated in the previous study, we use the SMOTE
approach to solve the class imbalance problem. We
then proceed to a quantitative and qualitative
assessment of its impact on the initial or original
dataset’. A quantitative comparison between the
synthetic (Ds) and true (Do) probability distributions
was performed using the Jensen—Shannon Distance
(JSD) across the ten most informative molecular
descriptors. The resulting JSD scores, reflecting the
degree of similarity between synthetic and original
distributions, are presented in Table 2. As outlined in
Table 2, the two distributions — the original one prior to
SMOTE and the synthetic one following SMOTE
algorithm are indistinguishable, with all JSD values
approaching 0. Before modeling, a qualitative
comparison between the two minority class
distributions was performed for two informative
descriptors selected based on their JSD scores
(minimum and maximum) to further study the impact
of the SMOTE algorithm.
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Table 2: JSD to quantitatively compare the original
(Do) and synthetic (Ds) distributions of the
minority class dataset for each descriptor involved
in models.

Descriptors(D) JSD(Do,
Ds)
VSA EState8 0.10
AATSCOc 0.13
ATSC5pe 0.09
GATS1pe 0.08
ATSC3pe 0.08
SdO 0.06
SsssN 0.08
GATS?2are 0.07
nRot 0.11
n5Ring 0.09

Kernel density estimation (KDE), a technique that
estimates and plots probability distribution functions,
was applied®. As demonstrated in Figure 2, there is a
significant overlap in the probability distribution
functions between the original and synthetic
distributions. This indicates that the SMOTE algorithm
effectively preserves data quality and maintains the
local structure of features®. The finalized dataset
encompasses a total of 1,726 molecular observations,
which are associated with 10 informative descriptors.
As illustrated in Table 3, a concise overview of the
samples employed in the experimental procedures, both
for training and testing, is provided.

Hyperparameter values of ML models

Following the identification of the optimal methods for
dimensionality reduction and handling class imbalance
problem, ML-based QSAR models for BBB
penetration prediction were implemented. Prior to
model development, a deep grid search with 10-fold
cross-validation was constructed to adjust the
hyperparameters of each classifier, except for the RF
model where default values were used’. Table 4
provides the best hyperparameters that gave the best
QSAR performance based on the statistical training of
the models used.
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Figure 2: Qualitative assessment of the impact of SMOTE algorithm on our dataset with KDE method. (a, b)
plot of density functions of the descriptors SAO and AATSCOc for the original (Do), synthetic (Ds) and mixture
(M) distributions colored blue, red and green respectively.

Performance of ML models

In this study, classification models were constructed
utilizing five distinct machine learning (ML)
algorithms. After model construction, both internal and
external validation schemes were employed to assess
model reliability. 10-fold cross-validation scheme was
used for internal validation using training dataset
consists of 1,380 molecular observations divided into
697 BBB+ and 683 BBB- compounds (Table 3) and 10

descriptors. In this procedure, the training dataset is
stochastically partitioned into ten distinct splits. For
each iteration, nine of these splits are used for training
the model, while the remaining split is used to assess
its performance. This process is repeated ten times so
that every split was used once for validation, and the
average of all results was taken as the final
performance measure.

Table 3: Details of the training and testing datasets used in this work.

Sample size Descriptors
Before After Training Test Before After
SMOTE SMOTE set set  ClustofVar ClustofVar
BBB+ 863 877 697 180
BBB- 137 849 683 166 919 10
Total 1000 1726 1380 346

Table 4: Optimal hyperparameters obtained for all classification-based ML models.

Classifiers Hyperparameters Values
SVM 3.0
Kernel rbf

Tolerance le-3

Gamma 0.1

k-NN k 3

Weights uniform

p 2

CART-DT criterion gini
max_depth 5
min_samples_leaf 1

max_features None
min_samples_split 5

min_impurity decrease 0

RF n_estimators 100
criterion gini

max_depth none
min_samples_split 2

max_features sqrt
min_impurity_decrease 0.0

bootstrap True

GBM n_estimators 300
max_depth 9

max_features sqrt

The performance of ML binary classifiers was performance across all evaluation  measures.

compared based on an internal validation scheme using
the training dataset. As shown in Table 5, the results of
the five ML binary classification models are presented
according to the evaluation measures defined and used
in equations 12 to 17. The table clearly reveal that the
decision tree classifier exhibits the weakest
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Conversely, SVM and k-NN classifiers appear to have
similar performance, although they differ in their
ability to correctly classify BBB+ molecules.
According to Table 5, GBM model outperforms all
other binary classifiers in terms of Q (92.90%), Pr
(94.84%), Re (90.61%), Sp (92.65%), and MCC (0.86).
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The next best classifier is RF with Q = 91.74% for10-
fold internal cross-validation. Considering Q (%), Pr
(%), F (%), and MCC, the classifiers were ranked in
descending order of performance as GBM, RF, k-NN,
SVM, and CART-DT. Based on the evaluation metrics,
the GBM estimator was identified as the most effective
logBB permeability prediction model of drug

Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20

molecules. To further confirm its stability and
predictive strength, GBM model was tested on an
independent dataset that had not been used during
training. As shown in Table 5 he GBM classifier
achieved a correct classification rate of 91.04% on the
test dataset, accurately identifying 88.89% of the
BBB+ molecular observations.

Table 5: Performances of binary classification models for five machine learning methods on 10-fold internal
cross-validation.

;’Cﬂ;‘:ﬁé"’” ML Models  Q(%)  Pr(%) Re (%) F (%) Sp (%) MCC
SVM 85.73 89.81 80.22 90.89 84.61 0.72
Internal k-NN 86.23 94.38 76.68 95.60 84.53 0.74
CART-DT 77.68 85.07 67.35 88.04 74.76 0.57
RF 91.74 93.19 89.92 93.52 91.50 0.84
GBM 92.90 94.84 90.61 95.09 92.65 0.86
SVM 84.10 88.34 80.00 88.55 83.97 0.69
External k-NN 83.24 96.21 70.56 96.99 81.41 0.69
CART-DT 72.25 88.18 53.89 92.17 66.90 0.49
RF 89.31 92.81 86.11 92.77 89.34 0.79
GBM 91.04 93.57 88.89 93.37 91.17 0.82
Table 6: Comparison with previous classification-based ML models.
No. Model Name (ﬁﬁzajegoslﬂfnpﬁ) Q(%) sz'%o}o ) SPGE)  MCC  AUC
1 Light GBM! 1000 X 396 85.00 42.00 99.00 0.60 -
2 Light GBM?® 7162 X 1119 90.00 85.00 94.00 - 0.90
3 Ls/cu* 921 X 392 66.00 80.00 51.00 0.40 -
4 Consensus KNN° 3884 X 2240 82.70 76.00 91.60 - -
5 SVM’ 1990 X 1874 92.90 93.70 90.70 0.83 -
6 Model proposed 1726 X 10 91.04 88.89 91.17 0.82 1.00

The Ability of recommended classifier to recognize
false-alarm molecule on the test dataset is good with Sp
= 91.17 %; and the Pr, F and MCC scores are 93.57%,
93.37% and 0.82 respectively.
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Figure 3: Receiver operating characteristics (ROC)
curve for the test set using five machine learning
methods and AUC (the area under ROC curve).

As illustrated in Figure 3, the ROC curves of each
classifier on the external test set are presented. It
appears that all classifiers demonstrate superior
performance in comparison to the random classifier,
which is represented by the diagonal line f(x) = x.
Therefore, the area AUC scores are as follows: 0.85 for
the CART-DT classifier, 0.90 for the SVM and k-NN
classifiers, 1.0 for the RF and GBM classifiers. The
study exhibits the effectiveness of our classifiers,
particularly ensemble models, in accurately
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distinguishing between blood-brain barrier permeable
and non-permeable pharmaceutical compounds. This
result therefore highlights the crucial role of effective
feature engineering methodologies in improving model
accuracy and overall predictive performance.
Applicability domain

In this study, binary classification-based ML models
were designed to evaluate the blood-brain barrier
(BBB) penetration potential of pharmaceutical
compounds encompassing broad-spectrum chemical
diversity. Since QSAR models are not universal,
defining the applicability domain AD is essential to
distinguish reliable interpolations from less reliable
extrapolations. Following validation, the applicability
domain of GBM classifier was analyzed through the
PCA bounding box method. The first three principal
components (PCs), derived from the ten most
informative descriptors obtained, capture more than
half of the total variance of the dataset”®. As can be
seen in Figure 4, test set observation points are colored
in red and the molecular observations of training
dataset are colored in blue. An analysis of the
prediction reliability using PCA bonding box shows
that only a few molecular observations reside outside
the AD. This incorrect prediction could be a
consequence  of the  oversampling  method
implementing by SMOTE algorithm that inserts
synthetic examples on the original dataset.
Consequently, it is assumed that the predictions for 3
of the 346 compounds will be incorrect, thereby
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suggesting that the selected model captures the
majority of the information present in the ten
informative features. Furthermore, this result reveals
that the test set molecular observations exhibit a
structural similarity greater than 99% to those in the
training set molecular observations, confirming strong
overlap between the two datasets and reliable
representation within the applicability domain of
classification-based ML models.

(%6€°21) €4

(%00°12) 124

PC2 (18.48%)

Figure 4: Applicability domain assessment for
training (blue) and test data (red) observations with
the first three PCs representing more than 50% of
total variance. PC1 captures 21.00% of the total
variance in the data, PC2 captures 18.48%, and
PC3 captures 12.39%.

In conclusion, we can say that our models can be used
with high accuracy to predict whether a compound can
effectively penetrate the brain or not.

Model comparisons

Using a larger number of descriptors (features) when
training machine-learning models can introduce several
important drawbacks especially in drug discovery.
Although the models display satisfactory predictive
performance, binary classification approaches that
incorporate a large number of descriptors are
susceptible to overfitting and exhibit limited
generalization to unseen data. This is because high-
dimensional descriptors often contain redundant or
highly correlated variables, a phenomenon that is often
referred to as the curse of dimensionality. Therefore, in
our study, we trained our models with the few
descriptors make it simpler to extract biological or
chemical meaning from model outputs. Thus, the
predictive capabilities of our binary classification-

AATSCOC " 100w somangrre

GATS2are B e o
GATS1pe .
sdo
VSA_EStates
nRot
ATSC3pe

ATSCS5pe

SsssN

n5Ring

—erfpr— . a

| ] i ) ) 0
50 -25 00 25 50 75
SHAP value (impact on model output)

T
10.0

Low

Fealure value

Universal Journal of Pharmaceutical Research 2025; 10(5): 8-20

based GBM model exceed those of previously
published ML models for blood—brain barrier (BBB)
penetration prediction, highlighting its improved
accuracy and robustness (Table 6).

Explaining ML model

In recent years, the need for interpretable models has
been increasingly recognized in research, industry, and
regulatory contexts’’. Given the potential risks of
deploying opaque or “black box” models in clinical
and preclinical applications, explainable artificial
intelligence (XAI) approaches have become a top
priority. The practice of XAl models is essential to
justify predictive results and ensure the reliability,
safety and transparency of preclinical or clinical
decision-making®®. In order to meet this objective,
SHAP was developed and validated to interpret how
the proposed GBM estimation algorithm predicts class
labels for chemical compounds. Here, Tree-SHAP, a
variant of SHAP algorithm, is applied to study the
effect or influence of selected informative descriptors
on the prediction of chemical class (BBB+ vs BBB-) of
pharmaceutical compounds studied with GBM model.
Thus, multiple visualization techniques can be applied
to examine and illustrate the distribution of SHAP
values, providing both local (instance-level) and global
(model-level) explanations of the predictive behavior.
As illustrated in Figure 5(a), a sample-wise SHAPE
summary plot is employed to demonstrate which
features are the most significant overall. In this plot,
the x-axis represents the Shapley values, whereas the y-
axis lists the descriptors and their corresponding value
distributions, sorted according to their mean absolute
Shapley values, highlighting the relative importance of
each feature. Each point represents a Shapley value
corresponding to a specific molecular observation, with
the color indicating the magnitude of the associated
descriptor. As shown in the color bar, sky blue
indicates the lowest values and magenta the highest.
The descriptors are displayed along the y-axis in
descending order of importance, reflecting their
relative contribution to the model’s predictions®. With
GBM classifier, averaged and centered Moreau-Broto
autocorrelation of lag 0 weighted by Gasteiger charge
(AATSCOc), geary coefficient of lag 2 weighted by
Allred-Rochow EN (GATS2are) and geary coefficient
of lag 1 weighted by Pauling EN (GATS1pe) are the
top three important descriptors.

AATSCOc
GATS2are

GATS1pe

2
S

VSA_EState8

2

ATSC3pe
ATSCSpe

SsssN

n5Ring

a I

25

mean(|SHAP value|)

Figure 5: Local and global explanation of the GBM classifier using SHAP values corresponding for the test
dataset.
(a) sample wise SHAP values; (b) mean SHAP value for each selected descriptor.
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Furthermore, Figure 5(b) shows the MAS (mean
absolute SHAP) value for specific informative
descriptors, serving as a metric of feature importance.
MAS values provide an effective measure of the effect
of selected informative descriptors in decision making
to classify a query compound. The more the mean
absolute values, the more the selected descriptors
influence overall in separating compounds into class
BBB- vs class BBB+. This will help interpret the
sample-wise SHAP values shown in Figure 5(a).
Shapley values are a means to describe the influence of
selected descriptors in the model prediction, and the
direction of this influence can be determined using the
positive or negative values assigned to a particular
descriptor for each molecular observation®’. As the
SHAP values indicate the direction of the predictions
(towards BBB- for negative values and towards BBB+
for positive values), it can be concluded that
compounds with higher AATSCOc values decrease the
probability of the BBB+ class, while lower values of
this descriptor appear to increase the probability of the
BBB+ class. In the other words, it appears that highly
charged molecules, such as macromolecular drugs,
recombinant proteins and nucleic acid, are not likely to
cross the blood-brain barrier*®. Electronegativity auto-
correlation is a graph-based molecular descriptor that
quantifies how the electronegativity values of atoms in
a molecule are correlated at a specific topological
distance (number of bonds apart)®®. In this work,
GATS2are and GATS1pe are identified as the next

most influential descriptors for predicting BBB
permeability,  reflecting electronegativity  auto-
correlation. These two descriptors are slightly

correlated with R? = 0.4 because they reflect the same
properties calculated in two different scales®.
Electronegativity scale formulated by Pauling analyses
or reflects single or multiple bond dissociation
energies. And, as we can see in Figure 5(a), GBM
classifier concludes that lower values of GATS1pe
have high SHAP values. Therefore, the likelihood of
BBB+ permeability increases as the amount of energy
required to break a bond decreases. Electronegativity
molecular property implemented in GATS2are uses the
formulation of Allred and Rochow electronegativity
that measures an atom’s tendency to attract electrons in
a chemical bond. It defined in terms of the electrostatic
force or Coulombic attraction exerted by the effective
nuclear charge (Z.rr) on valence electrons located at
the covalent radius (r,,,) of the atom®'. Therefore, the
higher the effective nuclear charge of the atom, the
higher the electronegativity. If atoms with a high
electronegativity value are often connected at a
distance d = 2 A in the molecular graph, the value of
the descriptor will be high and the autocorrelation will
be strong, which will increase the probability of BBB+.
Whilst the general trend between the top three
descriptors values and the Shapley values allows for
the identification of linear relationships, saturation
effects emerge in the impact of these characteristics on
the model's predictions.

Limitations of the study

The first limitation of this study is its dependence on a
single dataset from Shaker et al.' Although GBM
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classifier achieved strong predictive performance, its
clinical or preclinical relevance remains limited by the
dataset’s size and diversity. While the dataset provides
a solid foundation for algorithm development, its
restricted scope warrants caution when generalizing
these findings to real-world settings®*®. The second
limitation of this QSAR investigation pertains to the
quality of the underlying data, which is inherently
dependent on the accuracy and reliability of the
molecular descriptors employed in model development.
Molecular descriptors mathematically capture the
chemical information embedded in  molecular
structures. As molecules may exist in various
conformations, choosing the correct conformer is as
important as selecting suitable descriptors, since
conformational changes can alter descriptor values.
Therefore, accurate molecular geometries are
fundamental to constructing reliable QSAR models,
particularly those employing quantum-chemical or 3D
descriptors, as they ensure several benefits: (i)
enhances data quality and model robustness; (ii)
reduces overfitting and training complexity by
avoiding the time-consuming  hyper-parameter
adjustment process; (iii) provides better biological
relevance for structure—activity relationships and (iv)
improves comparability and transparency of model
development®. Another notable limitation of this study
stems from the approach used to balance the dataset.
Specifically, the application of the SMOTE algorithm,
while effective in mitigating class imbalance, may
introduce synthetic samples that do not fully represent
the actual data distribution or the fit between the
training and test data. This may increase the risk of
overfitting and potentially distort class boundaries, thus
affecting the generalizability of the model to
unobserved data.

CONCLUSIONS

In this study, we developed non-animal predictive
models to assess the ability of drug or pharmaceutical
compounds to penetrate the blood—brain barrier (BBB),
providing an alternative to traditional in vivo testing.
The construction of robust and accurate predictive
models necessitates the use of a dataset that is
sufficiently large, chemically diverse, and well-
balanced across classes. Using ClustOfVar algorithm
and correlation matrix technique, only 10 molecular
informative descriptors of 1,726 (original and
synthetic) compounds with different structures were
used. Then, five binary machine learning classifiers
(SVM, k-NN, CART-DT, RF and GBM) used to
predict whether a query compound is BBB permeable
or not were developed and validated using 10-fold
cross-validation. Since with a large or very large
number of descriptors the risk of likelihood of
overfitting and unexplainability increases, our models
were trained with the few descriptors to make it
simpler to extract relevant biological or chemical
meaning from model outputs. The accuracy of these
classifiers ranged from 77.68 (£1.25) to 92.90%
(£0.72), and the MCC ranged from 0.57(£0.02) to
0.86 (£0.01) in internal cross-validation. The best
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model, GBM, has a Q of 91.04%, a Pr of 93.57%, a Re
of 88.89%, a F-score of 93.37%, a Sp of 91.17%, a
MCC 0.82 and AUC of 1.0 in external validation
demonstrating that the collection of few and more
informative descriptors can more accurately distinguish
whether pharmaceutical compound can cross the
blood-brain  barrier.  Additionally, the SHAP
interpretability framework was employed to enhance
model transparency and to elucidate the relative
importance of key molecular descriptors influencing
prediction results. The SHAP analysis revealed that
two primary factors, such as the spatial distribution of
atomic charges and atomic electronegativity, play a
critical role in determining BBB penetration
predictions.  Overall, the explainable GBM
classification model developed in this study shows
strong potential as a predictive and screening tool to
identify drug candidates targeting the central nervous
system (CNS) or having a better pharmacokinetic
profile.
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