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Abstract 
____________________________________________________________________________________________________ 
 
Statistical process control (SPC) has become an essential tool for maintaining 
quality and safety in pharmaceuticals, public health, and other industries. This 
review critically examines the applications and synergistic potential of SPC 
applications in pharmaceutical manufacturing and public health risk assessment. 
The article demonstrates SPC's effectiveness in monitoring microbiological quality, 
detecting process variations, and assessing public health risks. Key applications 
include microbiological quality control of pharmaceutical products and water 

systems, statistical analysis of disinfectant efficacy, and risk assessment for 
infectious disease outbreaks. SPC can provide a unified analytical framework, 
facilitates proactive risk management, and supports data-driven decision-making. 
Future research should focus on developing standardized SPC protocols, 
integrating SPC with other data analysis tools, and exploring new applications. 
SPC enables researchers and practitioners to improve pharmaceutical quality and 
public health outcomes significantly. 
Keywords: Data-driven decision-making, infectious disease outbreaks, 

pharmaceutical quality control, public health risk assessment, risk management, 
statistical process control. 

 
INTRODUCTION 
 

Ensuring the quality and safety of pharmaceutical 

products and healthcare services stands as a paramount 

concern within an increasingly complex regulatory 

environment and against the backdrop of persistent 

threats from microbial contamination and disease 

outbreaks1-4. Traditional approaches to quality control 

and risk management in these sectors have historically 

relied on standardized procedures, retrospective testing, 

and qualitative risk assessments5-7. While these 
methods have provided a foundational level of safety, 

the escalating demands for higher quality, coupled with 

the need for more forward-looking and predictive 

strategies, necessitate the adoption of more 

sophisticated, data-driven methodologies8. Traditional 

pharmaceutical quality control often involves 

evaluating raw materials and the final packaged product 

through analytical tests such as conductivity, pH, 

thermal analyses, spectroscopy, density, refractometry, 

and titration, adhering to pharmacopeia guidelines to 

identify impurities9-14. Quality control laboratories play 

a crucial role in ensuring drug safety and efficacy.15 
Quality assurance (QA) aims to prevent defects 

proactively, whereas quality control (QC) is a reactive 

process that inspects and tests the final product15,16. The 

regulatory landscape has evolved, with early efforts 

focusing on standardizing potent drug formulas17. 

However, these traditional methods often depend on 

end-product testing and may not fully reveal issues 

arising during the manufacturing process18. 

Pharmaceutical quality assurance includes both 

technical and managerial activities across the supply 

chain19. 

The pharmaceutical industry's regulatory history 

indicates a growing recognition of the need for 
comprehensive quality management systems that 

extend beyond mere end-product testing20. Concepts 

like Good Manufacturing Practices (GMP) and Quality 

by Design (QbD) emphasize building quality into the 

product from its inception and throughout 

manufacturing21. This evolution highlights the 

importance of more advanced tools like Statistical 

Process Control (SPC) and Quantitative Microbial Risk 

Assessment (QMRA) for continuous monitoring and 

preventive risk evaluation22,23. 

In this context, Statistical Process Control (SPC) and 

Quantitative Microbial Risk Assessment (QMRA) have 
emerged as powerful tools, gaining increasing 

recognition for their ability to enhance both quality and 
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safety across the pharmaceutical and healthcare 

spectrum24. Statistical Process Control, defined as the 

application of statistical techniques to monitor and 

control a process or production method, offers a means 

to understand and manage variability, identify process 
issues, and drive continuous improvement25. Its 

principles, rooted in the ability to distinguish between 

common cause variation inherent to a process and 

special cause variation indicating external influences, 

enable organizations to maintain stable and predictable 

operations26. Key SPC tools include control charts, 

Pareto charts, histograms, and capability plots27. 

Complementing this approach, Quantitative Microbial 

Risk Assessment provides a framework for estimating 

the probability of adverse health outcomes resulting 

from exposure to microorganisms28,29. By integrating 

data on hazard identification, exposure assessment, 
dose-response relationships, and risk characterization, 

QMRA allows for a more informed and proactive 

approach to managing microbial risks30-32. 

This review aims to explore the innovative applications 

of SPC and QMRA in addressing contemporary 

challenges within pharmaceutical and healthcare 

settings. Specifically, it will delve into the synergistic 

potential of integrating these two methodologies to 

achieve a more comprehensive and effective approach 

to quality and safety. The scope of this review 

encompasses the application of SPC in microbiological 
quality control, the use of statistical methods in 

evaluating disinfectant efficacy, the role of both SPC 

and QMRA in monitoring and analyzing disease 

outbreaks, and their broader applications in diverse 

healthcare-related areas, as evidenced by a significant 

body of research in this field. The increasing 

complexity of pharmaceutical manufacturing and 

healthcare delivery systems necessitates more 

sophisticated and predictive approaches to quality and 

safety than traditional methods alone can provide. 

Regulatory bodies are continuously updating 

guidelines, reflecting a greater emphasis on preventive 
contamination control33. The European Medicines 

Agency's (EMA) revised Annex 1, set for full 

implementation by 2025, emphasizes quality risk 

management, advanced cleanroom technology, and 

stringent environmental monitoring for contamination 

control34. This evolution suggests that traditional 

reactive approaches might not be sufficient to meet 

these evolving standards and ensure patient safety35,36. 

Furthermore, SPC and QMRA, while distinct in their 

focus, share a common foundation in data analysis and 

a proactive orientation towards preventing problems 
rather than just reacting to them30,37. SPC focuses on 

monitoring and controlling processes to prevent 

deviations, while QMRA aims to predict and quantify 

risks before they materialize. This shared proactive 

nature suggests potential for powerful synergy35-37.  

Statistical process control  

A key aspect of SPC is its capacity to provide a real-

time, data-driven understanding of how processes 

behave38. Defined as the utilization of statistical 

techniques to monitor and regulate manufacturing 

processes, SPC aims to maintain consistency, reduce 
variability, and proactively identify deviations that 

could impact product quality39. By visually 

representing process data on control charts, 

manufacturers and healthcare providers can detect 

deviations from expected performance and understand 

the nature of the variation40-42. This distinction between 
common cause variation, which is inherent and 

predictable within a stable process, and special cause 

variation, which arises from external factors and 

indicates an unstable or out-of-control process, is 

crucial for implementing appropriate corrective actions. 

To achieve this, SPC employs a range of graphical and 

analytical tools43. Control charts, such as Shewhart 

charts, Individual-Moving Range (I-MR) charts, and 

Laney charts, are central to SPC, providing a visual 

representation of process data over time with 

statistically determined control limits that help 

distinguish between these two types of variation44-47.  

These charts, initially developed by Walter Shewhart, 

allow for the identification of special causes when data 

points fall outside control limits or exhibit non-random 

patterns48. Other valuable tools include Pareto charts, 

which prioritize improvement efforts by highlighting 

the most frequent issues; histograms, which display the 

distribution of data; and capability plots, which assess 

whether a process can consistently meet 

specifications49,50. The American Society for Quality 

(ASQ) defines SPC as the use of statistical techniques 

to control a process, emphasizing its role in monitoring 
process behavior and identifying issues25. 

In the context of pharmaceutical manufacturing, the 

application of SPC is crucial for ensuring product 

consistency across batches, reducing manufacturing 

defects, and identifying potential process deviations 

before they lead to quality issues51,52. Research has 

demonstrated the direct application of SPC to various 

aspects of pharmaceutical production53,54. For instance, 

studies have explored the use of variable and attribute 

control charts for monitoring active pharmaceutical 

components, demonstrating their utility in assessing 

process efficiency and facilitating comparative 
studies55. Furthermore, SPC has been applied to the 

analysis of drug recall trends, offering a 

multidimensional perspective on product safety and 

quality management56. Analysis of FDA recall data 

using SPC tools over a three-year period revealed that 

major contributors to recalls include microbiological 

quality issues, problems with product compositions, 

and packaging defects56. The implementation of 

statistical process control in the inspection of active 

medicinal compound quality has also been investigated, 

showcasing its role in maintaining the integrity of 
pharmaceutical ingredients9-14,45. SPC helps move 

beyond reactive quality control to a predictive approach 

focused on preventing defects and ensuring consistent 

product quality57,58. The industry's move towards 

continuous process verification (CPV), where SPC is 

vital, highlights the importance of ongoing process 

monitoring over reliance on final product testing59. An 

illustrative graph (Figure 1) shows FDA recall trend 

analysis60. Beyond general manufacturing, SPC plays a 

vital role in microbiological quality control within 

pharmaceutical facilities61-63. 
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Figure 1: Major contributors to pharmaceutical 

recalls, emphasizing microbiological issues and 

composition errors as leading causes. 

 

Monitoring trends in microbiological data, such as the 
levels of bioburden in purified water, air quality within 

cleanrooms, and surface microbial counts, is essential 

for maintaining a sterile and controlled environment64-

67. Control charts are particularly useful for establishing 

baseline microbiological levels, detecting significant 

shifts or trends that indicate a potential loss of control, 

and setting appropriate alert and action limits to trigger 

investigations and corrective actions68-71. Researchers 

have observed that microbiological distributions often 

follow the Poisson or Negative Binomial model, and 

data trending provides a comprehensive way to assess 

water quality and stability72. Research highlights the 
practical application of SPC in this domain, including 

the monitoring of microbiological environmental 

conditions, the assessment of purified water quality 

using control charts, and the evaluation of cleaning 

efficacy in pharmaceutical facilities through statistical 

process control54,71. A study using SPC and Six Sigma 

tools to analyze surface cleanliness in a class C 

manufacturing facility found that most areas followed 

non-Gaussian distributions, requiring transformation 

for analysis67,71. Material and personnel airlocks 

showed the highest risk of microbial excursions67,71. 
The application of specific control chart types, such as 

the Laney control chart, has also been explored for 

assessing the microbiological quality of oral 

pharmaceutical filterable products45. These charts can 

be particularly useful for non-normal data often 

encountered in microbiology72-74. 

The utility of SPC extends to monitoring and analyzing 

broader trends within pharmaceutical processes and 

healthcare data73,75-78. In the pharmaceutical industry, 

SPC has been employed to analyze the stability of 

active pharmaceutical components, ensuring their 

quality and efficacy over time79. It has also been used 
to optimize inventory management of goods quality, 

particularly in healthcare facilities, by enabling a data-

driven approach to supplier evaluation80. SPC analysis 

of raw materials used as excipients in healthcare 

products allowed for prioritization and quantitative 

evaluation based on material mass, rejection factor, 

delivery intervals, and lag time75-78. Furthermore, SPC 

principles and tools have found significant application 

in healthcare settings for overall quality 

improvement80,81. They are used to monitor patient 

outcomes, analyze variations in healthcare processes, 
and identify areas for potential improvement82,83. Many 

research articles further demonstrate this versatility, 

with studies applying SPC to monitor long-term cancer 

mortality rates, analyze the morbidity and mortality 

patterns of the COVID-19 pandemic, and track trends 

in surgical site infections84-87. SPC has also been used 

to improve first case start times in interventional 

radiology departments, aiming to enhance efficiency 

and patient care88. Furthermore, SPC methodologies 
have been applied to reduce unexpected variations in 

postoperative length of stay, which can negatively 

impact resources and patient outcomes89. 

The consistent application of various Statistical Process 

Control (SPC) tools across a wide range of topics 

demonstrates a strong recognition of these methods' 

adaptability and effectiveness in addressing diverse 

challenges within both the pharmaceutical and 

healthcare domains90-94. This widespread utility 

highlights that SPC is not merely a technical quality 

control tool but rather a comprehensive philosophy for 

continuous improvement, applicable across countless 
processes in both sectors25,94. 

In healthcare, SPC is utilized to monitor various 

clinical outcomes, including infection rates, 

postoperative complications, and overall surgical 

performance92-94. However, successful SPC 

implementation, particularly in specialized fields like 

pharmaceutical microbiology, requires a deep 

understanding of the specific characteristics of the data 

being analyzed72. Microbiological data frequently 

exhibit non-normal distributions (Figure 2), and even 

low-level contamination can be highly significant45,46. 
Therefore, standard SPC methodologies often need to 

be adapted95,96. Specific control charts, such as those 

designed for attribute data or low-count processes, must 

be employed for effective analysis. For instance, Laney 

control charts have proven useful for handling non-

normal microbiological data79,82. 

 

 
Figure 2: Histogram of microbial count distribution. 

 

Ultimately, the effective deployment of SPC leads to an 

enhanced understanding of processes, the early 

detection of performance deviations, a reduction in 

overall variability, and, consequently, the delivery of 
improved patient outcomes and the manufacture of 

higher-quality pharmaceutical products69,77. SPC 

provides a data-driven approach to root cause analysis, 

allowing for the implementation of targeted solutions 

for process enhancement60,63. It is also crucial for 

sustaining continuous improvement by validating the 

success of enhancements and helping to maintain 

achieved gains.  

QMRA  

QMRA is considered a significant improvement over 

traditional qualitative risk evaluation18. It offers a 

structured and quantitative methodology for assessing 
microbial risks by using mathematical modeling to 

estimate the risk of infection and illness from 
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environmental exposure to microorganisms22-24 (Figure 

3). By integrating mathematical models and data on 

hazard, exposure, and dose-response, QMRA provides 

a more precise estimation of the likelihood of adverse 

health outcomes22-24.  
 

 
Figure 3: QMRA Risk Distribution (Monte Carlo 

Simulation). 
 

This quantitative output supports a more informed and 

forward-looking approach to risk management in 
pharmaceutical and healthcare settings, facilitating the 

identification of critical control points and the creation 

of targeted interventions to minimize microbial 

contamination and subsequent health risks97. The 

probabilistic nature of risk characterization also enables 

the consideration of uncertainty and variability, leading 

to more robust and reliable risk estimates. The QMRA 

framework generally follows four classical working 

steps98-101: 

1. Hazard Identification: Involves identifying the 

specific microorganisms of concern and the 
diseases they can cause, including symptoms and 

severity.  

2. Exposure Assessment: Focuses on determining 

the dose (the amount of a microorganism an 

individual is exposed to) by measuring the 

concentration of microorganisms in the 

environmental medium and the extent of contact.  

3. Dose-Response Assessment: Uses existing 

outbreak data or laboratory studies to establish the 

relationship between the exposure dose and the 

likelihood of a health outcome, often requiring the 

selection of appropriate mathematical models.  
4. Risk Characterization: Integrates the 

information from the previous steps to calculate 

the likelihood of the health outcome, frequently 

employing Monte Carlo simulations to account for 

variability and uncertainty.  

The wide array of applications for QMRA highlights its 

versatility in addressing microbial risks across various 

industries18,24. QMRA is used to assess the microbial 

safety of drinking water, quantify health risks 

associated with bioaerosol exposure in wastewater 

treatment plants, and is applied to various exposure 
routes, including food, water, and air, providing a 

preventive approach to risk management28,98. 

Furthermore, it can be utilized to develop failure 

prevention strategies in water treatment systems, and its 

rapid, routine application was highlighted as critical for 

public health protection during the coronavirus disease 

2019 pandemic98-101. 

 

The synergistic convergence of SPC and QMRA 

The combination of SPC and QMRA creates a 

powerful synergy for enhancing pharmaceutical quality 

by providing a more holistic and proactive strategy for 

managing microbiological risks. SPC can continuously 
monitor critical process parameters affecting 

microbiological quality, such as temperature, humidity, 

and bioburden levels in water systems90,93. The reliable 

data generated by SPC can then serve as a vital input 

for QMRA models, enabling a dynamic and 

quantitative assessment of the potential risks associated 

with these parameters98,99. For example, if SPC detects 

an upward trend in purified water bioburden levels, this 

information can be integrated into a QMRA model to 

estimate the potential impact on product sterility and 

patient safety40,77. This integration allows for timely 

corrective actions before a critical threshold is 
breached, facilitating a shift from reactive testing to 

preventive risk management and resulting in higher-

quality pharmaceutical products with enhanced 

microbial safety97. 

The convergence of SPC and QMRA also significantly 

improves healthcare safety by providing a robust, data-

driven approach to managing microbiological risks68,69. 

SPC can monitor healthcare processes that impact 

microbial safety, such as hand hygiene compliance, 

sterilization procedures, and environmental controls in 

hospital settings70,71. The resulting SPC data can be fed 
into the QMRA framework to quantify the risk of 

healthcare-associated infections (HAIs) and other 

adverse outcomes stemming from microbial 

exposure28,68. This combined strategy enables 

healthcare facilities to pinpoint high-risk areas, 

implement targeted interventions, and use SPC to 

continuously monitor the effectiveness of those 

interventions47,70. By integrating process control with 

risk assessment, healthcare organizations can adopt a 

more forward-looking and evidence-based approach to 

patient safety and infection prevention35,36.  

Challenges and future directions 
Implementing and integrating SPC and QMRA in 

pharmaceutical and healthcare settings face several 

challenges34,101. These include the requirement for 

specialized expertise in both statistical analysis and 

microbiology, the difficulty of validating QMRA 

models with limited data, and the need to develop 

robust data collection methodologies100,101. 

Standardizing SPC protocols across different 

pharmaceutical manufacturing processes and healthcare 

settings remains another significant hurdle33,37. 

Future research should prioritize developing 
standardized guidelines and protocols for the integrated 

application of SPC and QMRA34,101. Furthermore, 

exploring new applications of this convergence in 

emerging areas, such as personalized medicine and 

advanced pharmaceutical manufacturing technologies, 

could yield substantial benefits21,59.  

 

CONCLUSIONS 

 

The SPC and QMRA represent a significant 

advancement in ensuring pharmaceutical quality and 
healthcare safety. SPC provides a robust statistical 
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framework for monitoring and controlling critical 

processes, enabling the early detection of deviations 

and the reduction of variability. QMRA offers a 

quantitative approach to assessing microbial risks, 

allowing for more informed and proactive management 
of potential hazards. By integrating these two powerful 

methodologies, the pharmaceutical and healthcare 

industries can move beyond traditional reactive 

approaches to embrace predictive, data-driven 

strategies for preventing contamination, ensuring 

product quality, and safeguarding public health. 

Continued research, robust case studies, and the 

development of standardized protocols will further 

enhance the utility and impact of this synergistic 

convergence and accelerate its adoption across the 

industry. 
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