

Available online at www.ujpronline.com Universal Journal of Pharmaceutical Research

An International Peer Reviewed Journal

ISSN: 2831-5235 (Print); 2456-8058 (Electronic)

Copyright©2018; The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

RESEARCH ARTICLE

IN VITRO ANTI-LEISHMANIAL ACTIVITY AGAINST CUTANEOUS *LEISHMANIA* PARASITES AND PRELIMINARY PHYTOCHEMICAL ANALYSIS OF FOUR YEMENI MEDICINAL PLANTS

Manal Mutahar Ali Al- Hajj¹, Hassan A Al-Shamahy², Bushra Y Alkhatib³,

Bushra A Moharram⁴

¹Biology Department, Faculty of Sciences, Sana'a University, Republic of Yemen.

²Medical Microbiology and Clinical Immunology, Faculty of Medicine and Health Sciences, Sana'a University ³Unit of Immunology and Physiology - Biology Department, Faculty of Sciences, Sana'a University, Republic of Yemen. ⁴Department of Pharmacognosy, Faculty of Pharmacy, Sana'a University, Republic of Yemen.

Article Info:

Article History: Received: 27 May 2018 Reviewed: 8 July 2018 Accepted: 27 August 2018

Published: 15 September 2018

Cite this article:

Al-Hajj MMA, Al-Shamahy HA, Alkhatib BY, Moharram BA. *In vitro* anti-leishmanial activity against cutaneous *leishmania* parasites and preliminary phytochemical analysis of four Yemeni medicinal plants. Universal Journal of Pharmaceutical Research 2018; 3(4): 44-50. *https://doi.org/10.22270/ujpr.v3i4.183*

*Address for Correspondence:

Manal MA Al-Hajj, Faculty of Sciences, Sana'a University, Sana'a, Yemen. Tel: +967-774237423.

E-mail: manalmutaher1989@gmail.com

Abstract

Objective: *Cutaneous leishmaniasis* is one form of leishmaniasis that chiefly infected the poor sections of the society. The prototypical therapeutic interventions in vogue are handicapped due to toxicity and an alarming increase in drug resistance. So, the aim of our study was to assess the anti-leishmanial activity of *Euphorbia cactus* Ehrenb, *Euphorbia anmak* Forssk, *Euphorbia inarticulate* Schweinf, and *Pergularia tomentosa* L.

Methods: The extracts of plants were prepared by maceration method and by Soxhlet extractor. The extracts were dried and re-dissolved in 2% dimethyl sulfoxide (DMSO) 1% solvent. *Leishmania spp.* cells were then tested with serial concentrations (15.6 μ gml⁻¹ to 500 μ g ml⁻¹) of the extracts, using the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. All experiments were performed in triplicate and analyzed by ANOVA test. The optical density values as measured by Enzyme-Linked Immunosorbent Assay (ELISA) were used to calculate the IC₅₀ values.

Results: The results indicated that the methanolic latex extract of *Euphorbia cactus* Ehrenb, *Euphorbia ammak* Forssk had potent anti-leishmanial activity against the promastigotes of *Leishmania* spp. based on a dose-dependent response analysis. The IC₅₀ values for *Euphorbia cactus* Ehrenb and *Euphorbia ammak* Forssk after 24 h incubation against *Leishmania* spp. promastigotes were less than <15.6 µg ml⁻¹. Furthermore, the phytochemical analysis of methanolic extracts showed the presence of alkaloids, phytosterols, phenols, saponins, and flavonoids.

Conclusion: In conclusion, the present study reveals that latex extract of *Euphorbia* cactus Ehrenb and *Euphorbia annak* Forssk contain active compounds that have anti-leishmanial activity, which could serve as an alternative agent in the treatment of *Cutaneous leishmaniasis*, but further studies would, therefore, be needed to assess the activity of these materials of this plants *in vivo* clinical response and study their toxicity on cell lines.

Keywords: Anti-leishmanial activity, *Euphorbia cactus* Ehrenb, *Euphorbia ammak* Forssk, *Euphorbia inarticulate* Schweinf, *Pergularia tomentosa* L, Yemeni medicinal plants.

INTRODUCTION

Cutaneous leishmaniasis (CL), one clinical form of leishmaniasis, a term referred to skin clinical symptoms caused by several species of obligate intramonocular phagocytic cells protozoan parasites produce a skin ulcer that heals spontaneously in most cases leaving an unsightly scar. These parasites belong to the genus *Leishmania*, that transmitted by the bite of a female phlebotomine sand fly^{1.4}. *C. leishmaniasis* is still one of the world's most neglected disease that significant morbidity worldwide and shows a worrying increasing trend. CL is endemic in large areas of the tropics, subtropics, and the Mediterranean basin⁵. In Yemen, this disease is endemic and the most prevalent skin infectious diseases^{6,7}. To date progression in developing an effective vaccine against CL has not been successes and chemotherapy is the only effective

way to treat the disease. However, current therapy is toxic, expensive, have severe side effects, as well as it emerges a resistance to drugs. Therefore, there is a great and urgent need for developing a new and safe anti-leishmanial drug⁸⁻¹¹.

Investigation bioactive compounds from plants that used medicinally are regarded as one of the strategies to discover new drugs for leishmaniasis¹². The World Health Organization (WHO) has estimated that approximately 80% of individuals rely on traditional medicines for their primary health care needs^{13,14}. In different cultures and countries, many plants are used in the form of powders, crude extracts or infusion to treat several diseases including parasitic diseases without any scientific evidence of efficacy. In Yemen, there is a rich tradition of the use of herbal medicine for the treatment of various diseases, including inflammations, infections and other diseases¹⁵⁻¹⁸.

Despite the worldwide spread of C. leishmaniasis and the significant morbidity that caused by this disease in the world as well as in Yemen, its current drugs have limitations. So the investigation of plants that are used in folk medicine may have prognostic value to discover new and safe cutaneous leishmanicidal drug. The present study conducted to offer a scientific basis for the traditional use of Euphorbia cactus Ehrenb, E. ammak Forssk, E. inarticulate Schweinf, stems and leaves of Pergularia tomentosa L as cutaneous leishmanicidal, this may be regarded as future promising phytotherapeutics in the treatment C. leishmaniasis. The objectives of this study were to evaluate the in vitro cutaneous anti-leishmanial activity of E. cactus Ehrenb, E. anmak Forssk, E. inarticulate Schweinf, stems and leaves of P. tomentosa L extracts. Also carrying out preliminary phytochemical screening of those plant extracts.

Table 1: List of the selected plants that used in the	
investigation.	

mycsugation.		
Plant species (family)	Part used ^a	Site of collection
<i>E. cactus</i> Ehrenb (Euphorbiaceae)	Lat.	North Taiz
<i>E. ammak</i> Forssk (Euphorbiaceae)	Lat.	North Taiz
<i>E. inarticulate Schweinf</i> (Euphorbiaceae)	Pha.	North Taiz
P. tomentosa L (Asclepiadeceae)	S,L	North Taiz
		T . T .

a-S.:Stem, Pha.: phylloclades, L:Leaves, Lat.: Latex.

SUBJECTS AND METHODS

Plant materials

Four selected plants (*E. cactus* Ehrenb, *E. ammak* Forssk, *E. inarticulate* Schweinf, stem and leaf of *P. tomentosa* L (Table 1) commonly used in Yemen by traditional healers for the treatment of *C. leishmaniasis* and other skin diseases were collected from Taiz governorate of Yemen in September 2016, and botanical identification was by Dr. Hassan Ibrahim botanist at the Botany section, Biology department, Faculty of Science, Sana'a university, Sana'a (Yemen).

Plant preparation

Stems and leaves of *P. tomentosa* L and phylloclade of *E. inarticulate* Schweinf were collected, washed, sliced, weighed and sundried under the shade at room temperature. After complete drying, they grinded to a coarse powder in electrical blender. The dried crude plants were maintained in dark vials and stored at -20° C until used^{19,20}. The latex of *E. cactus* Ehrenb and *E. ammak* Forssk were collected in clean glass bottles and were kept in the refrigerator (4–8°C) until extraction²⁰.

Table 2: Percentage	extraction yield of plant
0.1	traata

	extracts.	
Plant name	Crude	Extracted amount
	methanolic	(g) extraction
	extract (g)	yield (%)
E. cactus Ehrenb	5.24	206 (2.54%)
E. ammak Forssk	11.215	309 (3.629%)
E. inarticulate Schweinf	32.870	350 (9.39%)
P. tomentosa L leaves	29	300 (9%)
P. tomentosa L Stems	43.98	300 (14.66%)

Plants extraction

The dried plants were extracted successively with MeOH (80%) by using a Soxhlet extractor. The obtained extracts were filtered through a Whatman-1 filter paper. The filtrates were dried by evaporation on a rotary evaporator below 45°C and freeze dryer to give the crude dried extract. All extracts were stored at -20°C until used, the yield obtained are shown in Table 2. Latex was extracted by maceration using MeOH (80%). The latex was soaked (1 ml) in 10 ml of solvent in a stoppered container with frequent agitation at room temperature. After maceration the soaked latex were filtrated through a Whatman-1 filter paper. The filtration was dried by a rotary evaporation and freeze drier to give the crude dried extract. The crude dried extract of latex were stored at -20°C, the yield obtained are shown in Table 2.

Anti-promastigote assay

Patient selection and Leishmania spp. isolation

Following clinical diagnosis by dermatologist, and confirmed by laboratory. Leishmania spp. were isolated from the patient with C. leishmaniasis infection. Skin lesions of the patients were cleansed with 70% ethanol before sample scraping. These preparations were stained with Giemsa and examined under a light microscope with magnification ($\times 1000$), and it was inoculated in Nicolle-Novy-McNeal (NNN) culture medium. The culture tubes were kept in an incubator at 25°C for 5-10 days. Leishmania spp. Promastigote that observed during microscopy transferred to RPMI-1640 and incubated at 25°C for mass cultivation medium. Patient who included in this study were: (1) patient with infection not exceed 6 months, (2) patient did not used drugs or herbs, and (3) Heavy infection.

Determination of 50% promastigote growth inhibitory concentration (IC₅₀) **of the plant extracts** Stock solution of crude extracts was prepared in 2 % (DMSO)/deionized water at 10 mg/10 ml. RPMI-1640 medium were distributed in each well of a 96 well plate. The extract solutions (100 μ l) were serially diluted down each lane of 96-well plate with medium. Then, the growing cells at 10⁶ promastigotes/ml were added to each well to give final six concentration of plant extracts 15.6 μ g ml, 31.25 μ g ml⁻¹, 62.56 μ g ml⁻¹, 125 μ g ml⁻¹, 250 μ g ml⁻¹, 500 μ g ml⁻¹ (two folds dilutions).

Table 3: In vitro acti	ivity of <i>E. cactus</i> Ehren	b
methanolic extracts on	<i>Leishmania</i> spp. after	24h.

	Concentration	Parasite	Inhibition
	(µg/ml)	inhibition	%
		(mean±SD)*	
	15.6	$0.034 \pm 0.045^{a,b}$	80.5
	31.25	$0.034 \pm 0.046^{a,b}$	80.5
	62.56	0.034±0.037 ^{a,b}	84.32
	125	0.034±0.018 ^{a,b}	92.37
	250	0.034±0.0176 ^{a,b}	92.54
	500	0.034±0.017 ^{a,b}	92.79
	Untreated	0.034±0.0236	
	control		
·		6.0 11 ** 4	

Mean \pm SD is OD values of 3 wells. * Average \pm standard division, ^aNo significant difference compared to each other (p>0.05). ^bSignificant difference compared to untreated wells (p<0.05)

The final concentration of DMSO was not be higher than 1% (v/v) as this concentration did not affect the parasite growth rate, mobility, morphology²¹ in all experiments. A Pentostam (Albert David Limited-India) was used as positive control at 10 μ g ml⁻¹, untreated media were used as negative control, and DMSO alone was used as solvent control. 96-well micro-plates were incubated at 26°C. After the incubation, the effect of the isolated extracts on cell viability was assessed using the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, which measures the metabolic activity of mitochondria²². In which, 20 µl of MTT solution (5 mgmL⁻¹) (SIGMA) was added to each well and incubated for 4 h at 26°C. The test principle "Tetrazolium salts are cleaved to formazan dye by cellular enzyme mitochondrial succinate dehydrogenase (only in the viable promastigites)". Finally, the MTT solubilization solution was added to each well to dissolve the insoluble purple formazan product into coloration solution and incubated for another 10 min. The absorbance was measured at 570 nm for each well, using an ELISA reader^{23,24}. The live promastigotes percentage inhibition ratio were calculated as described by Bansal *et al.*,²⁵.

Inhibition Rate (I%)

Data were presented as mean \pm SD of triplicate experiments for each well. Mediam inhibitory concentration value (IC₅₀ value), the concentration that decreased parasite growth by 50% was calculated using linear regression analysis (dose–response analysis) associated with 95% confidence interval. Lower IC50 value indicates greater anti-leishmanial activity. *Leishmania* **spp. counting**

20 μ l of cells from the culture were taken and placed in 1.5 ml Eppendorf tube containing 20 μ l of Eosin (1%) then mixed. After that 10 μ l of cells were placed on haemocytometer (Thoma slide). Total 5 squares were counted then the result numbers were multiply by 100000 so we can get the number of cells in 1 ml of culture.

Table 4: <i>In vitro</i> activity of <i>E. ammak</i> Forssk
methanolic extracts against <i>Leishmania</i> spp. after
2/h

	24n.	
Concentration	Parasite	Inhibition
(µg/ml)	inhibition (mean±SD*)	%
15.6	$0.088 {\pm} 0.006^{b}$	62.71
31.25	0.089 ± 0.004^{b}	62.28
62.5	0.084 ± 0.002^{b}	64.4
125	$0.075 \pm 0.001^{b,c}$	68.22
250	$0.067 \pm 0.007^{b,c}$	71.61
5006	$0.068 \pm 0.001^{b,c}$	71.18
Untreated control	0.008 ± 0.236	

Mean \pm SD is OD values of 3 wells. *Average \pm standard division, ^bsignificant difference compared to untreated wells (p<0.05). ^csignificant difference compared to 15.6, 31.25, and 62.5 µg/ml

Preliminary qualitative phytochemical screening

The dried extracts were tested to identify alkaloids, carbohydrates, glycosides, fixed oil and fats, anthraquinones, phenolic compounds and tannins, phytosterols, proteins, saponins, gum and mucilage. A preliminary phytochemical analysis was carried out using tube-test reaction and thin-layer chromatography (TLC) as described by Banu and Cathrine¹⁹.

Statistical Analysis

Data are presented as mean \pm SD of triplicate experiments, and the plant extract concentration required for 50% inhibition *in vitro* (IC₅₀) calculated by dose-response analysis associated with 95% confidence interval by Graph pad prism 7 Demo.

Ethical Consideration

Ethical clearance for the study was taken from the Faculty of Medicine and Health Sciences Research Review Committee. Informed consent was taken from the patients before the collecting specimens.

Table 5: In vitro activity of E. inerticulata Shweinf extracts against Leishmania spp. for 24h.

Concentration	Parasite inhibition	%
(µg/ml)	(mean±SD*)	Inhibition
15.6	0.164±0.033 ^b	30.5
31.25	0.155±0.016 ^b	34.32
62.56	0.154 ± 0.015^{b}	34.74
125	0.142 ± 0.012^{b}	39.83
250	0.141 ± 0.01^{b}	40.25
500	0.119±0.008 ^{b,c}	49.59

Mean ±SD is OD values of 3 wells. * Average ± standard division, ^bsignificant difference compared to untreated wells (p<0.05). ^csignificant difference compared to 15.6 µg/ml (p<0.05).

RESULTS

The percentages of extraction yield for each investigated plant were summarized in Table 2. The results of anti-Promastigote assay (*in vitro* test) for the five plant extracts against promastigotes stages of *Leishmania* spp. are summarized in Table 3 to Table 7. Data in Table 8 elucidate that the highest antileishmanial activity was obtained from *E. cactus* Ehrenb and *E. ammak* Forssk with IC₅₀ value < 15.6

 μ g ml^{-1.} The leaves and stems of *P. tomentosa* L and *E. innerticulata* Schweinf extracts showed inactive antileishmanial activity (IC₅₀ value > 500 μ g ml⁻¹).

Table 6: In vitro activity of P. tomentosa L.	leaves
mathanalia avtracte againet Laichmania enn	for 24h

methanolic extracts against Leishmania spp. for 24h.		
Concentration	Parasite inhibition	%
(µg/ml)	(mean±SD*)	Inhibition
15.6	0.172±0.03 ^{a,b}	27.11
31.25	0.168±0.022 ^{a,b}	28.81
62.56	0.155±0.021 ^{a,b}	34.32
125	0.151±0.001 ^{a,b}	36.01
250	0.146±0.021 ^{a,b}	38.13
500	0.146±0.033 ^{a,b}	38.13
Untreated control	0.008 ± 0.236	

Mean \pm SD is OD values of 3 wells. * Average \pm standard division, ^aNo significant difference compared to each other (p>0.05). ^bSignificant difference compared to untreated wells (p<0.05)

Phytochemical analysis and thin layer chromatography results-

Phytochemical analysis of extracts indicated the presence of various bioactive components. Compounds, such as alkaloids were found in the five plant extracts. However, fixed oils, fats and Anthraquinones were absent in all extracts, Phytosterols were found in the four plant extract and in *E. ammak* Forssk extract was absent. Glycosides, Gum and Mucilage were found only in *E. cactus* Ehrenb and *E. ammak* Forssk, proteins were found only in *E. cactus* Ehrenb and *E. inarticulate* Schweinf.

 Table 7: In vitro activity of P. tomentosa L. stems

 methanolic extracts against Leishmania spp. for

24h.		
Concentration	Parasite inhibition	Inhibition
(µg/ml)	(mean±SD*)	%
15.6	0.001±0.207	12.28
31.25	0.001±0.203	13.98
62.5	0.008±0.189 ^{b,c}	19.91
125	0.004±0.191 ^{b,c}	19.06
250	0.004±0.171 ^{b,c}	27.54
5006	0.012±0.151 ^{b,c}	36.01
Untreated control	0.008 ± 0.236	

Mean \pm SD is OD values of 3 wells. * Average \pm standard division, ^bSignificant difference compared to untreated wells (p < 0.05). ^csignificant difference compared to 15.6 and 31.25 µg/ml (p < 0.05).

However, Saponines were found only in *E. cactus* Ehernb, *E. ammak* Forssk, stem and leaf of *P. tomentosa L*, and carbohydrates were found in *E. inerticulata* schweinf, stem and leaf of *Pregularia tomentosa* L (Table 9). The TLC analysis showed spots of determined constitutes in each extract (Table 10).

DISCUSSION

The first choice drug for treatment of *C. leshmaniasis* is Pentostam which has toxic side effects. Also, no vaccine is available to cure this disease. Most of the studies directed towards plants that is used traditionally as potential source of new alternative medicines. Some of the drugs obtained from plants used in the treatment of diseases caused by protozoan include alkaloids

quinine obtained from the plant genus Cinchora and artemisinin obtained from the plant genus Artemisia annua and both of them used in the treatment of malaria. As well as, emetin obtained from the plant genus Cephaelis used in treatment of ameobiasis²⁶. Findings of current study showed that the methanol latex extract of Euophobia cactus Ehrenb (Euophrbiaceae) had choice antileshmanial activity (IC₅₀<15.6 μ g ml⁻¹ against promastigotes). There was no previous studies reported about its biological activities against Leishmania spp. to compare with, so current results appear to be one of the first that studied its activity. The methanol latex extract of E. anmak Forssk showed a good antileishmanial activity (IC₅₀<15.6 μ g ml⁻¹ against promastigotes). Current obtained data is compatible with data reported by Abdel-Sattar et al., against Leishmania infantum which found to inhibit the growth of Leishmania infantum with IC₅₀ value<24.05 μ g/ml²⁷. These findings confirmed that latex of Euophobia cactus Ehrenb and E. anmak Forssk could be considered as having promising antileishmanial activity.

Table 8: IC₅₀ values (μ g/ml) for promastigotes growth inhibition of the methanol extracts of five

plants.					
Plant extracts	µg/ml				
E. cactus Ehrenb	<15.6				
E. ammak	<15.6				
E. innerticulata Schweinf	>500				
P. tomentosa L. L	>500				
P. tomentosa L. S	>500				

IC₅₀=Inhibitory concentration 50%, L= leaves, S= stems.

The methanol extract of *E. inarticulate* Schweinf phylloclades showed no antileishmanial activity $(IC_{50}>500 \ \mu g \ ml^{-1})$. Although, there was no previous studies reported about its biological activities against Leishmania spp. to compare with, so current results appear to be one of the first that study its antileishmanial activity. The leaves and stems extracts of P. tomentosa L and E. inarticulate Schweinf showed no antileshmanial activity (IC₅₀>500 µg/ml), while several studies reported good activity of these plants against fungi^{28,29}. Flavnoids may be the active compound in E. anmak Forssk against Leishmania spp. in current study. Current findings can be confirmed by the finding of Das *et al.*,³⁰ in which they tested the antileishmanial activity of flavonoids against topoisomerase I of Leishmania donovani. They illustrated that these compounds inhibited topoisomerase I which subsequently inhibit the relegation step in parasite growth³⁰. Phenolic, saponins, and alkaloids that we detected in current study may be they are the active compounds responsible for antileishmanial activity in E. ammak Forssk and E. cactus Ehrenb. Kayser et al.,³¹ in their comprehensive review of antiparasitic drug development view phenolic, saponins, and alkaloids inhibition activity have against Leishmania parasite^{31,32}. Phytochemical results of leaves and stems of P. tomentosa L indicated the presence of saponins, phenolic phytosterols, compounds, tannins, carbohydrates, alkaloids, and flavonoids, except

coumarins only present in stems. The phytochemical results of leaves and stems of *P. tomentosa* L in current study is in agreement with Hassan *et al.*, and Shinkafi in Nigeria, except glycosides, and anthraquainins were not present in extracts of *P. tomentosa* $L^{28,29}$. The absent of glycosides, and anthraquainins in plant *P*.

tomentosa L might be due to the environmental factors, such as altitude, temperature, and locations as described by Zidorn and Stuppner in which they referred these differences in components is due to the environmental factors³³.

Constituents	Test	E.C	E.A	E.I	P.L	P.S
Alkaloids	Mayer's test	+	+	+	+	+
	Wanger's test	+	+	+	+	+
Carbohydrates	Bendict's test	-	-	+	+	+
Fixed oil and fats	Spot test	-	-	-	-	-
Glycosides	Salkowski's test	+	+	-	-	-
Anthraquinones	Borntrager's test	-	-	-	-	-
Phenolic compounds	Ferric chloride test	-	-	+	+	+
and Tanins	Mg and HCL reduction test	-	-	+	+	+
Phytosterols	Libermann-Burchard's test	+	-	+	+	+
Proteins	Biuret test	+	-	+	-	-
Saponins	Foam test	+	+	-	+	-
Gum and Mucilage	Gum and Mucilage test	+	+	-	-	-

+= signify presence, -= signify Absence, E.C= E. cactus, E.I= E. inerticulata, E.A= E. anmak, P.L= P. tomentoa L leaves, P.S= P. tomentoa L

Table 10: TLC investigation of methanol extract of five plant extracts.

Constituent	Solvent System	Plant extract	No. spots	Rf values
Anthraglycoside	EtoAc: MeOH: water	E.C		
	(100:13.5:10)	E.A		
		E.I	1	0.62
		PL	1	0.58
		PS	3	0.2
				0.42
				0.56
Bitter principles	EtoAc: MeOH: water	E.C	2	0.05
1 1	(100:13.5:10)			0.69
	` ,	E.A	2	0.072
				0.73
		E.I	2	0.53
				0.8
		PL		
		PS	3	0.29
		- ~	-	0.56
				0.87
Flavonoid	EtOAc: formica.: glacial	E.C		
Thuvonoid	acetica.: water	E.A	1	0.68
	(100:11:11:26)	E.I	2	0.6
	(100.11.11.20)	12.1	2	0.0
		PL	1	0.52
		PS	1	0.52
Saponins	CHCL3:glacial acetic a.:	E.C	1	0.14
Suponins	MeOH: water (64:32:12:8)	E.A	1	0.14
		E.I	1	0.5
		PL	2	0.12
			-	0.46
		PS	2	0.3
		- ~	-	0.4
Coumarins	Diethyl ether: toluene (1:1)	E.C	1	0.59
	······································	E.A	1	0.70
		E.I		
		PL		
		PS	3	0.14
		. = '	="	0.63
				0.03

TLC: thin layer chromatography, EtoAc: ethyle acetate, MeOH: methanol, CHCl₃: chloroform, a: acid, RF: retention factor,---:absent, *EC: E. cactus Ehrenb, EA: E. ammak, EI=E. inerticulata shwenf*, *PL:P. tomentosa L. leaves, PS: P. tomentosa L. Stem* TLC: (a) anth (anthraquinones) after sprayed with 10% ethanolic KOH agent, (b) BIT (bitter principles) after sprayed with vanillin sulpharic acid, (c) Fl (flavonoids) after sprayed with polythlene glycol, (d) saponins after sprayed with vanillin supharic acid), and(e) coumarins after sprayed with 10% ethanolic KOH. Abbreviations at the end of plates in each plateare: PL, *P. tomentosa L* leaves, PS: *P. tomentosa L* stems, EA: *E. ammak, EI: E. inerticulta, EC: E. cactus*

stems

CONCLUSIONS

In conclusion, the methanolic extract of E. cactus Ehrenb and E. ammak Forssk showed a good antileishmanial activity with IC₅₀ value>15.6 µg ml⁻¹ relative to negative control. The preliminary phytochemical investigation reveals the extracts contain secondary metabolites that indicate these plants may be highly promising candidate drugs. Furthermore the results offer a scientific basis for the traditional use of investigated plants. This is a preliminary evaluation using promastigotes must be complemented with an evaluation using intracellular amastigotes in macrophages. At the same time, an evaluation of the possible cytotoxicity of the tested plants is important. Further screening for Yemeni plants species especially that are used in traditional medicine must be done for searching of potential anti-leishmanial active constituents and record ethno-botanical data.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Tropical Disease Research Centre at Technology and information university, Faculty of Pharmacy, Sana'a University, and the Microbiology Department of the National Center of Public Health Laboratories (NCPHL) and Yemen Lab, Sana'a, Yemen which provided working space. Thanks go to Musned Education fund for financial supporting.

AUTHOR'S CONTRIBUTION

This research work is part of A M. Sc thesis. Al-Hajj MMA: conducted experiments and wrote up the thesis. Al-Shamahy HA: supervised the experimental work, revised, and draft the manuscript. Alkhatib BY: coadvisor of the work. Moharram BA helped in chemical analysis. All authors revised the article and approved the final version.

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

- 1. Kayser FH, Bienz KA, Eckert J, Lindenmann J. Medical microbiology: Immunology, bacteriology, mycology, virology, parasitology. Georg Thieme Verlag, 1993.
- AShford R. The leishmaniases as emerging and reemerging zoonoses. Int J Parasit 2000; 30 (12-13): 1269-1281. https://doi.org/10.1016/S0020-7519(00)00136-3
- Patz JA, Graczyk TK, Geller N, Vittor AY. Effects of environmental change on emerging parasitic diseases. Int J Parasit 2000; 30(12-13): 1395-1405. https://doi.org/10.1016/S0020-7519(00)00141-7

- Mahdy MA, Al-Mekhlafi HM, Al-Mekhlafi AM, Lim YA, Shuaib NOB, Azazy AA, Mahmud R. Molecular characterization of Leishmania species isolated from *Cutaneous leishmaniasis* in Yemen PloS one 2010; 5(9): 128-79. https://doi.org/10.1371/journal.pone.0012879
- WHO, World Health Organization. Control of Leishmaniasis. Report of a meeting of the WHO expert committee on the control of leishmaniasis, Geneva; 2010.
- 6. Y-FETP: Yemen field epidemiology training program conference Sana'a, Yemen 2016.
- 7. AL-Kamel MA. Spectrum of winter dermatoses in rural Yemen. Int J Derm 2016; 55: 512-517.
- Verpoorte R, Choi YH, Kim HK. Ethnopharmacology and systems biology: A perfect holistic match. J Ethnopharmacol 2005; 100: 53-56. https://doi.org/10.1016/j.jep.2005.05.033
- Polonio T, Efferth T. *Leishmaniasis*: drug resistance and natural products. Int J Mol Med 2008; 22(3): 277-286. PMID: 18698485
- 10. Nussbaum K, Honek J, Cadmus C, Efferth T. Trypanosomatid parasites causing neglected diseases. Curr Med Chem 2010; 17(15): 1594-1617. https://doi.org/10.2174/092986710790979953
- 11. Alizadeh R, Hooshyar H, Bandehpor M, Arbabi M, Kazemi, F, Talari A, Kazemi, B. Detection of drug resistance gene in *Cutaneous leishmaniasis* by PCR in some endemic areas of iran. Iranian Red Crescent Medical J 2011; 13(12):863. PMID: 22737430
- 12. Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 2012; 17(11): 12771-12791. https://doi.org/10.3390/molecules171112771
- 13. Mothana RA, Kriegisch S, Harms M, Wende K, Lindequist U. Assessment of selected Yemeni medicinal plants for their *in vitro* antimicrobial, anticancer, and antioxidant activities. Pharm Biol 2011; 49(2): 200-210. *https://doi.org/10.3109/13880209.2010.512295*
- 14. Pokharen N, Dahal S, Anuradha M. Phytochemical and antimicrobial studies of leaf extract of *Euphorbia neriifolia*. J Med Plan Res 2011; 5(24): 5785-5788.
- 15. Fleurentin J, Pelt JM. Repertory of drugs and medicinal plants of Yemen. J Ethnopharmacol 1982; 6 (1): 85-108. https://doi.org/10.1016/0378-8741(82)90073-3
- AL-Dubai A, AL-Khulaidi A. Medicinal and Aromatic Plants of Yemen (In Arabic). Sana'a, Yemen: Obadi Center for studies and publishing, 1996.
- 17. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Natural Prods 2012; 75(3): 311-335. https://doi.org/10.1039/b513504b
- 18. Alshawsh MA, RA Mothana RA, Al-Shamahy HA. Assessment of antimalarial activity against *Plasmodium falciparum* and phytochemical screening of some Yemeni medicinal plants. Evid Based Complement Alt Med 2009; 6(4):453-6.https://doi.org/10.1093/ecam/nem148
- 19. Banu KS, Cathrine L. General techniques involved in phytochemical analysis. Int J Advanced Res Chem Sci 2015; 2 (4): 25-32.
- 20. Vimal JB, Das SSM. Toxicity of *Euphorbia antiquorum* latex extracts to fresh water fish Poecilia reticulata. Int J Fish Aqua Stud 2015; 2(3): 214-216. https://doi.org/10.1007/s13205-018-1105-6
- 21. Baloch N, Nabi S, Bashir S, Yasser M. Kahraman A. *In-vitro* antileishmanial, cytotoxic activity and phytochemical analysis of *Nepeta praetervisa* leaves extract and its fractions. Int J Pharm Pharma Sci 2013; 5: 475-8. https://doi.org/10.1186/s12941-016-0170-0
- 22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunological Met 1983; 65(1-2): 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- 23. Mahmoudvand H, Ezzatkhah F, Sharififar F, Sharifi I, Dezaki ES. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of *Myrtus communis* L. The Korean J Parasitol 2015; 53(1): 21. https://doi.org/10.3347/kjp.2015.53.1.21

- 24. Et-Touys A, Fellah H, Sebti F, Mniouil M, Aneb M, Elboury H, Talbaoui A, Dakka N, Sadak A, Bakri Y. In vitro antileishmanial activity of extracts from endemic Moroccan Medicinal Plant Salvia verbenaca (L.) Briq. ssp verbenaca Maire (S. clandestina Batt. non L). Eur J Med Plants 2016; 16: 1-8. https://doi.org/10.9734/EJMP/2016/27891
- 25. Bansal D, Sehgal R, Chawla Y, Mahajan RC, Malla N. In vitro activity of antiamoebic drugs against clinical isolates of Entamoeba histolytica and Entamoeba Dispar. Annals Clin Microbiol Antimicro 2004; 3(1). https://doi.org/10.1186/1476-0711-3-27
- 26. Chan-Bacab MJ, Peña-Rodríguez LM. Plant natural products with leishmanicidal activity. Natural product reports 2001; 18(6): 674-688. https://doi.org/10.1039/B100455G
- 27. Abdel-Sattar E, Maes L, Salama MM. *In vitro* activities of plant extracts from Saudi Arabia against Malaria, leishmaniasis, sleeping sickness and Chagas disease. Phyto Res 2010; 24: 1322-1328. https://doi.org/10.1002/ptr.3108
- 28. Hassan S, Umar R, Ladan M, Nyemike P, Wasagu R, Lawal M, Ebbo A. Nutritive value, phytochemical and antifungal properties of *Pergularia tomentosa* L. (Asclepiadaceae). Int J Pharmacol 2007; 3(4): 334-340.

https://doi.org/10.3923/ijp.2007.334.340

- 29. Shinkafi S. Phytochemical Analysis and Chromatographic Studies of *Pergularia tomentosa* L. and *Mitracarpus scaber* Zucc. British Micro Res J 2014; 4: 550. https://doi.org/10.9734/BMRJ/2014/3534
- 30. Das BB, Sen N, Roy A, Dasgupta SB, Ganguly A, Mohanta BC, Dinda B, Majumder HK. Differential induction of Leishmania donovani bi-subunit topoisomerase I–DNA cleavage complex by selected flavones and camptothecin: Activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res 2006; 34 (4): 1121-1132. https://doi.org/10.1093/nar/gkj502
- 31. Kayser O, Kiderlen A, Croft S. Natural products as antiparasitic drugs. Parasit Res 2003; 90(2): 55-62. https://doi.org/10.1007/s00436-002-0768-3
- 32. Maes L, Berghe DV, Germonprez N, Quirijnen L, Cos P, De Kimpe N, Puyvelde VL. In vitro and in vivo activities of a triterpenoid saponin extract (PX-6518) from the plant Maesa balansae against visceral Leishmania species. Antimicro Agents Chemoth 2004; 48(1): 130-136. https://doi.org/10.1128/AAC.48.1.130-136.2004
- 33. Zidorn C, Stuppner H. Evaluation of chemosystematic characters in the genus Leontodon (Asteraceae). Taxon 2001; 115-133. https://doi.org/10.2307/1224515