

Available online at www.ujpronline.com

Universal Journal of Pharmaceutical Research

An International Peer Reviewed Journal ISSN: 2831-5235 (Print); 2456-8058 (Electronic)

RESEARCH ARTICLE

PHYTOCHEMICAL SCREENING AND IN VITRO ANTIOXIDANT AND ANTI-DIABETIC POTENTIALS OF PERSEA AMERICANA MILL. (LAURACEAE) FRUIT EXTRACT

Mahadeva Rao US

School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Malaysia.

Article Info:

Article History:

Received: 5 August 2018 Reviewed: 19 September 2018 Accepted: 29 October 2018 Published: 15 November 2018

Cite this article:

Mahadeva Rao US. Phytochemical screening and *in vitro* antioxidant and anti-diabetic potentials of *Persea americana* mill. (*Lauraceae*) fruit extract. Universal Journal of Pharmaceutical Research 2018; 3(5): 34-41. https://doi.org/10.22270/ujpr.v3i5.200

*Address for Correspondence:

Dr. Mahadeva Rao US, School of Basic Medical Sciences, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Malaysia. Tel: +6011-16547654, E-mail: raousm@gmail.com

Abstract

Objective: Diabetes mellitus (DM) is a metabolic disorder characterized by insulin resistance and pancreatic β -cell dysfunction and the management of blood glucose level is an important strategy in the control of the disease and complications associated with it. Therefore, components that cause uptake of glucose from the bloodstream and inhibitors of carbohydrate hydrolyzing enzymes can be useful in treatment of DM and medicinal plants are often used to achieve this aim. *Avocado* fruit is rich in phytochemicals necessary for treatment of DM. The purpose of this study was to investigate the inhibitory effect of *Persea americana* fruit extracts on α -amylase and α -glucosidase enzymes.

Methods: The percentage yield, phytochemical screening (both qualitative and quantitative), *in vitro* antioxidant and anti-diabetic assays, and kinetic studies were performed with different solvent extracts of Avocado fruit pulp.

Results: Avocado had great and promising potential as pharmaceutical agent, particularly to be developed as anti-diabetic through the inhibition of α -glucosidase and α - amylase enzymes. *In vitro* studies of the antioxidant activity of the fruit extract gave an evidence and strong biochemical rationale of their therapeutic potential.

Conclusion: The fruit extract of *P. americana* may play an important role in the development of nutraceuticals and also in the management of oxidative stress induced DM.

 $\begin{tabular}{ll} \textbf{Keywords:} & α-amylase, & α-glucosidase, & antioxidant, & glucose, & nutraceuticals, \\ phytochemical. & \end{tabular}$

INTRODUCTION

Medicinal plant is an important part of traditional health care system and a veritable health care source for the vast majority of the world population. It was estimated that 70-80% of people worldwide use herb for management of mild to moderate illnesses¹⁻⁵. Diabetes mellitus (DM) is an endocrine disorder resulting in obstinate elevation of blood glucose under both fasting and postprandial conditions resulting in micro and macro vascular complications⁶. The prevalence of diabetes is increasing globally and is prophesied to increase by twofold from 150 million in the year 2000 to 300 million by the year 2030⁷. The uncharacteristic regulation of glucose metabolism that results from a malfunctioning/scarce insulin secretion is the key pathogenic event in DM. Currently available drugs for hyperglycemia exhibit adverse side effects on prolonged use. Hence the exploration for novel

therapeutic drugs continues. Recent focus has been made towards "functional food", a natural source food purported to have a beneficial health effect for the successful treatment of various ailments especially life style diseases like diabetes. The *Avocado* (*Persea americana* Mill.), unflatteringly known in the past as alligator pear, midshipman's butter and vegetable butter. It has traditionally been used due to its antibacterial, antifungal, hypotensive, anti-inflammatory, and immune-enhancing effects^{8,9}.

Furthermore, *Avocado* juice made from ripe fruit was very popular due to its numerous health benefits. Because of the limited number of reports on the fruits of *Avocado* available in the literature, it was deemed sensible and justified to systematically investigate the fruits of this plant^{10,11}. This present study seeks to validate the folkloric use of *Avocado* fruit extract (AFE) in the management of DM and several oxidative stress induced diseases. The study also confined the

ISSN: 2456-8058 34 CODEN (USA): UJPRA3

kinetics of α -amylase and α -glucosidase inhibitory potentials of AFE.

MATERIALS AND METHODS

Plant collection, preparation and extraction.

Fresh fruits of *P. americana* were selectively collected and authenticated in the Tepi Agricultural Research Center, Tepi and the same was authenticated in department of biology, Mizan Tepi University, (Vide voucher No. MTU-ETARC 102/08/02). The peel was peeled off and the edible part was chopped into thin pieces, dried at 50-60°C, and ground into powder. Known amount of dried amount was exhaustedly extracted by the process of maceration in an aspirator using various solvents as menstruum. AFE with different extracting solvents (ethanol, 50% hydro-ethanol (v/v), decoction (a concentrated liquor resulting from heating or boiling with water) and aqueous) were concentrated under reduced pressure by rotary evaporator to obtain respective thick syrup mass, and stored at 4°C. Working concentration of the extract was made in non-pyrogenic distilled water before use in the experiments.

Chemicals and reagents

Porcine pancreatic α -amylase, rat intestinal α glucosidase, 1, 1-diphenyl-2-picrylhydrazyl, gallic acid, acarbose and p-nitrophenyl-glucopyranoside were products of Sigma-Adrich, South Africa. Other chemicals and reagents were of analytical grade and the water used was glass distilled.

Measurement of percentage yield

The percentage yield of the extract was calculated as- $\% \text{ Yield} = \frac{c - b}{a} \text{X} 100$

% Yield =
$$\frac{c-b}{a}$$
 X100

Where a = weight of sample; b = weight of beaker and c= weight of beaker + sample.

Phytochemical Screening

1. Qualitative Phytochemical screening

Using described procedure¹², the AFE was subjected to qualitative phytochemical screening with different extracting solvents.

2. Quantitative Phytochemical Analysis

a. Assessment of Total Phenolic Content (TPC)

The quantification of TPC with different solvents of AFE was carried out using the prescribed procedure reported by Wolfe K et al., using Folin Ciocalteu reagent¹³. Gallic acid was used as standard. TPC was expressed as mg/g gallic acid equivalent using the equation obtained from a calibration curve of gallic acid.

b. Determination of Total Flavonoid Content (TFC)

The TFC with different solvents' extracts were determined using the method employed by Swanny¹⁴. TFC was calculated as quercetin (mg/g) equivalent using the equation obtained from a calibration curve of quercetin.

In vitro Antioxidant Assays

All experiments were conducted in triplicates and all the negative control (blank) was prepared using the same procedure replacing the AFE with distilled water. The free radical scavenging activity of the AFE were evaluated with various solvents based on its

scavenging activities on the stable 1, 1-diphenyl-2picrylhydrazyl (DPPH) free radical according to the method described by Braca A et al., 15. Determination hydroxyl radical scavenging potential of AFE with various solvents to prevent Fe²⁺/H₂O₂ induced decomposition of deoxyribose was carried out using the modified method of Mathew and Abraham¹⁶. Determination of superoxide anion radical scavenging potential of AFE with various solvents were achieved according to the method employed by Liu and Chang¹⁷. The chelating of Fe²⁺ by AFE with various solvents was estimated as described by Dinis et al., 18. Ferric ions reducing power of the with various solvents' extracts and standards were determined according to the method adopted by Müller et al., 19. The ability of AFE to scavenge 2, 2-Azino-bis(3-ethylbenzothiazo line-6-sulphonic acid) (ABTS) cation chromophore obtained from the oxidation of ABTS solution and potassium persulphate with various solvents was determined according to the method of Re et al., 20. To these above said antioxidant assays, the percentage inhibitory/scavenging activity of the AFE/standard was calculated using following equation-

$$AFE = \frac{A0 - A1}{A0} X100$$

Where A_0 is the absorbance of the control, and A_1 is the absorbance of the AFE / standard. The half maximal inhibitory concentration (IC₅₀) value were calculated from the linear regression equation using following equation-

$$y = m x + c$$
,

Where; y is the percentage activity and equals 50, m is the slope, c is the intercept and x is the IC_{50} value.

In vitro Anti-diabetic Assays

The α -amylase and α -glucosidase inhibitory assays were carried out using the procedure of *Apostolidis E et* al., 21. The 50% inhibition of enzyme activity (IC₅₀) of these enzymes was expressed as % inhibition using the expression:

$$\% \ Inhibition = \frac{Acontrol - AAFE}{Acontrol} X100$$

Where A_{control} and A_{AFE} are the absorbance's of the control and AFE respectively. Concentrations of AFE /standard resulting in 50% inhibition of enzyme activity (IC50) were determined graphically using the linear regression equation-

$$y = mx + c$$

Where y is the percentage activity and equals 50, m is the slope, c is the intercept and x is the IC_{50} value.

Kinetic Studies

The kinetics on inhibition of α -amylase and α glucosidase activity by AFE with various solvents was conducted using modified methods of Ali et al., 22 and Nagmoti and Juvekar²³ respectively. The amount of reducing sugars released was determined spectrophotometrically using maltose standard curve for α-amylase and p-nitrophenol standard curve for αglucosidase. A double reciprocal (Lineweaver-Burk) plot (1/v versus 1/[S]) where v is reaction velocity and [S] is substrate concentration was plotted to determine the mode of inhibition. Thus, reaction rates (v) were calculated and double reciprocal plots of enzyme

kinetics K_m and V_{max} values were also calculated from Lineweaver-Burkplot $(1/v \text{ versus } 1/[S])^{24}$.

Statistical Analysis

Statistical analysis was performed using a Graph Pad Prism 5 statistical package (Graph Pad Software, San Diego, MA, USA). Data were expressed as means of replicate determinations \pm SD, for all assays and was subjected to one-way analysis of variance (and nonparametric) followed by Bonferroni: compare all pair of column. Statistical significance was considered at p<0.05.

RESULTS

The percentage yield of AFE with different extracting solvents is shared out in Table 1.

Table 1: The percentage yield from different extracting solvents used in AFE

	extracting solvents used in ATE.				
AFE	Ethanol	50% Hydro-	Decoction	Aqueous	
		ethanol			
Yield	11.12	29.71	8.05	18.55	
(%)					

Values are mean and standard deviation (SD) of triplicate determination. n=3; (p<0.05).

Phytochemicals (PC)

The qualitative analyses of the AFE with different extracting solvents are presented in Table 2. Phenols,

alkaloid, tannins and triterpenes were detected at varying degree in all the tested extracts while flavonoid was found in trace amount in all solvent extracts besides anthraquinone and phytosterol were found in trace amount in the ethanol and 50% hydro-ethanol extracts. The results of the quantitative phytochemical screening (TFC and TPC) of AFE with different extracting solvents are depicted in Table 3.

Antioxidant activity

The in vitro antioxidant potentials of the AFE with different extracting solvents are shown in Figure 1 to Figure 6. The extracts scavenged/inhibited/chelated the generated radicals/ions/metals in all assays were evaluated. Ethanolic extracts showed better capability to scavenge DPPH and hydroxyl radicals in a dose dependent manner (0.125-1.00 mg/ml) (Figure 1 and Figure 2). Its corresponding IC_{50} value is 0.52 and 0.59 μg/ml which is lower and significantly different (p<0.05) from the standard (silymarin) IC₅₀: 1.09 and 1.12 µg/ml as seen in Table 4. However, hydro-ethanol showed remarkable capability in scavenging superoxide anion radical (Figure 3), its IC₅₀ value is 0.49 µg/ml which is comparable to silymarin with IC₅₀ value 1.12 µg/ml. AFE also showed significant metal chelating potential against ferrous ion (Figure 4) and the respective IC50 value when compared with the standard (citrate) is presented in Table 4.

Table 2: Phytochemical constituents of the AFE with different extracting solvents.

Phytochemicals	Ethanol	50% Hydro- ethanol	Decoction	Aqueous
Alkaloids	+++	+++	++	++
Phenols	+++	++++	+++	++
Flavonoids	+	+	-	-
Anthraquinones	++	++	+++	+++
Tannins	++++	++++	++	++
Triterpenes	-	++	+++	++++
Phytosterol	-	++	+++	+++

+: detected; +++: degree of intensity; -: not detected or in trace amount.

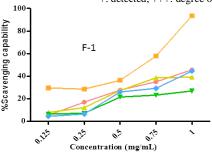


Figure 1: DPPH scavenging effect of AFE with different extracting solvents.

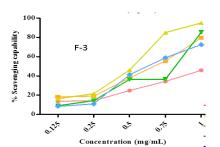


Figure 3: Scavenging effect of AFE with different extracting solvents on superoxide anion radical.

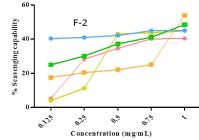


Figure 2: Scavenging effect of AFE with different extracting solvents on hydroxyl radical.

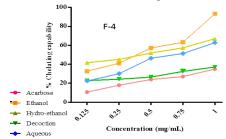


Figure 4: Metal chelating capability of AFE with different extracting solvents.

ISSN: 2456-8058 CODEN (USA): UJPRA3

Table 3: The result of the quantitative phytochemical screening of AFE with different extracting solvents.

Phytochemicals	Ethanol	50% Hydro- ethanol	Decoction	Aqueous
TFC (mg quercetin in g ⁻¹)	0.36	1.10	0.61	0.30
TPC (mg gallic acid g-1)	8.35	10.29	10.79	10.41

Table 4: The IC₅₀ values of the free radical scavenging/chelating capabilities of different extracts of *P. americana* fruit

Samples	$IC_{50}(\mu g/mL)$				
	DPPH	ABTS	Hydroxyl	Superoxide	Metal Chelating
Silymarin	1.09±0.02	0.39±0.05	1.12±0.02	1.12±0.01	-
Citrate	-	-	-	-	1.51 ± 0.01
Ethanol	0.52 ± 0.05	0.38 ± 0.02	0.59 ± 0.01	0.63 ± 0.10	0.39 ± 0.01
Hydro-ethanol	1.15 ± 0.03	0.30 ± 0.02	0.94 ± 0.01	0.49 ± 0.00	0.41 ± 0.05
Decoction	1.78 ± 0.01	0.49 ± 0.02	1.03 ± 0.01	0.57 ± 0.01	1.73 ± 0.02
Aqueous	1.05 ± 0.01	0.49 ± 0.05	1.76 ± 0.01	0.60 ± 0.01	0.67 ± 0.01

The values are expressed as mean \pm standard deviation (SD) of triplicate determination. (p<0.05). Silymarin is the standard antioxidant agent for all the antioxidant assays except metal chelating that has citrate as the standard.

The reducing power (Figure 5) and ABTS cation scavenging capability (Figure 6) of the extracts competed well with silymarin in a dose dependent manner (0.125-1 μ g/mL) with the highest dose of 1μ g/ml showing the best activity (Table 4).

In vitro anti-diabetic assays

The inhibitory potentials of AFE on both α -amylase and α - glucosidase enzymes is dose dependent (0.125-1 µg/mL), and the percentage inhibition is presented in Figure 7 and Figure 8 respectively. Ethanolic extract has the lowest IC₅₀ (0.15 µg/mL) which is significantly different (p<0.05) from all other extracts and acarbose (Table 5). Ethanol and decoction extracts show milder inhibition of α -amylase with their respective IC₅₀ value of 0.57 and 0.62 µg/ml which is higher and significantly different (p<0.05) from acarbose and hydro-ethanol (IC₅₀:0.47 and 0.42 µg/mL) respectively. Lineweaver-Burk plot of ethanolic extract of Avocado fruit eliciting competitive and uncompetitive inhibition on α -amylase (Figure 9) and α -glucosidase activity (Figure 10) respectively.

Table 5: The IC₅₀ values for different extracts of *P. americana* fruit on specific activities of α-amylase and α-glucosidase enzymes.

and a gracosidase enzymes.					
Samples	IC ₅₀ (μg/mL)				
	α- Glucosidase	α-Amylase			
Acarbose	0.52±0.04	0.47±0.01			
Ethanol	0.15 ± 0.00	0.57 ± 0.01			
50% Hydro-ethanol	0.39 ± 0.00	0.42 ± 0.05			
Decoction	0.46 ± 0.01	0.62 ± 0.03			
Aqueous	0.45 ± 0.04	0.53 ± 0.08			

The values are expressed as mean±standard deviation (SD) of triplicate determination. Means down vertical column not sharing a common superscript are significantly different (p<0.05) from each other.

DISCUSSION

The use of plants in treating diseases is as old as civilization²⁵ and herbal medicine is still a major part of habitual treatment of different diseases²⁶. The process in the preparation of herbs like pulverization, extraction and solvents deployed in the extraction of raw material for drugs affects the percentage yield of

the biologically active compound present in the extracts. In this experiment, local solvents (ethanol, 50% hydro-ethanol, decoction and distil water) were used in Avocado fruit extract preparation. The percentage yield indicated that 50% hydro-ethanol (v/v) has the highest yield of 29.71% from the 30g dry weight of the fruit sample extracted while decoction extract yield 8.05% of the 30 gm dry weight of the sample. It is worthy of note that the traditional healer use decoction (boil the dry fruit pulp) as their method of extracting the biologically active component of the plant. It may be suggested that this method of extraction accounted for low yield of extract which may be lesser efficacious.

Result of the quantitative phytochemical assays indicated the concentration of the different quantity of the PC found in AFE though, its bioavailability is unpredictable in the in vivo study, because a lot of factors like absorption barrier of the PC in the gastro intestinal tract (GIT), the effects of different enzymes such as the glucosidase, esterase, oxidase and hydrolases originating from the host and the mycobiota which may inhibit PC activity in the GIT²⁷. PC are known to possess varying antioxidant activities²⁸⁻³². Antioxidant activity of a medicinal plant cannot be concluded based on a single antioxidant test model²⁸ as such several in vitro antioxidant tests were conducted on the extracts using silymarin as positive control for all assays except metal chelating assay where citrate was used as the standard. The free radical scavenging capability of fruit of Avocado on the molecules of DPPH radicals, ABTS cations radical, the reducing power, superoxide anion radicals were determined; nevertheless, also assayed the hydroxyl radical which is one of the most potent ROS in the biological system that reacts with polyunsaturated fatty acid moieties of cell membrane phospholipid causing cellular damage³³. The result of the assay showed that ethanolic AFE has better performance in antioxidant activity compared to the standard and other extracts tested for DPPH, hydroxyl radical and metal chelating activities while hydro ethanol showed superior activity compared to the standard and other extracts tested in ABTS, superoxide anion and reducing power. All these predictions are based on the standard curve of percentage

inhibition/scavenging effect and IC₅₀ value of the tested extract which revealed a decrease in concentration of the ROS which may be due to the scavenging ability of *AFE*. Similar findings have been documented for the antioxidant and anti-inflammatory properties of Avocado fruit³⁴. It is noteworthy that the tested extract demonstrated the ability to neutralize the ROS at different degree which may be because of the presence of PC like polyphenols which has capability to directly

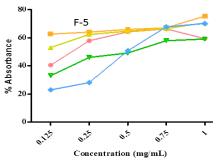


Figure 5: Reducing potentials of AFE with different extracting solvents.

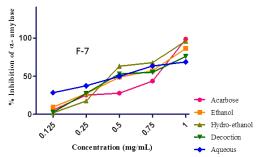


Figure 7: The inhibitory potentials of AFE with different extracting solvents on α-amylase activity.

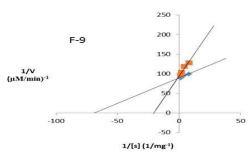


Figure 9: Lineweaver-Burk plot of ethanolic extract of *Avocado* fruit eliciting competitive inhibition on. α- amylase activity.

Marked postprandial hyperglycaemia is important in the pathogenesis of T2DM. It induces mitochondrial superoxide overproduction which potently inhibits the glycolytic enzyme glyceraldehyde-3-phosphate thus, diverting upstream metabolites from glycolytic pathway into pathway of glucose overutilization resulting in formation of diacyl glycerol from dihydroxyl acetone phosphate (DHAP) a potent activator of protein kinase C (PKC) which ultimately causes β -cells destruction and insulin resistance 44-46. The unregulated hydrolysis of starch by α - amylase and α -glucosidase which catalyze the rate limiting step in the conversion of oligosaccharides and disaccharides

scavenge superoxide and other ROS like hydroxyl and peroxyl radicals³⁵⁻³⁷. Saponins, triterpenes and phytosterol have been demonstrated to scavenge superoxide anion³⁸⁻⁴⁰.

Flavonoid are currently receiving attention as a potential protector against variety of human disease, major flavonoid has been shown to have neutralizing effect on free radical and ROS like hydroxyl radical, superoxide radical, hydrogen peroxides 28,39,41-43,



Figure 6: ABTS scavenging effect of AFE with different extracting solvents.

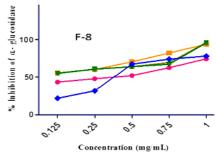


Figure 8: The inhibitory potentials of AFE with different extracting solvents on α -glucosidase activity.

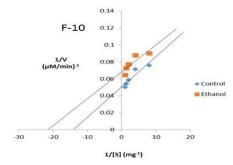


Figure 10: Lineweaver-Burk plot of ethanolic extract of Avocado fruit eliciting uncompetitive inhibition on α -glucosidase activity.

into monosaccharide's is responsible for the elevated blood glucose seen in T2DM. Therefore, controlling hyperglycaemia via inhibition of carbohydrate hydrolysing enzymes is an important strategy in the management of T2DM $^{47-49}$. In vitro evaluation of the inhibitory effects of the AFE on α -glucosidase and pancreatic α -amylase enzymes was carried out using acarbose as the standard to determine its percentage inhibition and their respective IC $_{50}$ value. Mild inhibition of α -amylase and strong inhibition of α -glucosidase enzymes is targeted as a way of reducing postprandial hyperglycaemia, and elimination of the unwanted effect like gastrointestinal discomfort

flatulence, diarrhoea associated with the use of acarbose^{6,49,50}. In this study, ethanol and decoction extracts mildly inhibit α - amylase with their respective IC₅₀values of 0.57 and 0.62 µg/ml which is higher and significantly different (p<0.05) from acarbose with lower IC_{50} (0.47 µg/mL). The result of the inhibitory potentials of the extracts on α-glucosidase showed ethanol and decoction extracts has potent inhibition of the enzyme activity. Thus, it may be employed in the management of postprandial hyperglycemia. This finding is consistent with findings of many authors 47,48,51 who described moderate inhibition of α amylase and strong inhibition of α -glucosidase as a better therapeutic approach to be deployed in the delay and regulation of carbohydrate hydrolysis in the intestine which is responsible for glucose toxicity observed in T2DM.

The ethanolic extract which possesses the highest IC₅₀ for α -amylase enzyme and lowest IC₅₀ for α glucosidase compared to acarbose and other tested extracts of Avocado fruitwas used to determine the mode of inhibition of α - amylase and α - glucosidase enzymes in other to investigate its enzyme inhibition kinetics. Similar findings were observed by our previous study on Morinda citrifolia and its secondary metabolite scopoletin⁵²⁻⁵⁴. Nevertheless, our past research on Avocado's antihyperglycemic, antidiabetic dyslipidemic and antioxidant potentials with different studies in in vivo models well line up with the present findings⁵⁵⁻⁵⁷. Result for the mode of inhibition of α amylase enzyme showed that the ethanolic AFE is inhibiting breakdown competitively the disaccharides and oligosaccharides which are substrate for α - amylase. The V_{max} values obtained with inhibitor and without inhibitor in the reaction pathway is the same, the K_m values decreased from $4.85 \times 10^{-2} \, \mu M^{-1}$ for reaction pathway without inhibition to 1.44x10⁻² µM⁻¹ with inhibitor. Decreased K_m value signifies increase affinity. This result proposed competitive mode of inhibition. However, the mode of inhibition of α glucosidase by ethanolic AFE is by uncompetitive inhibition. The propose model is the binding of the AFE (inhibitor) to a site other than the active site and only when the substrate is binding to ES complex thereby inhibiting the formation of product. The kinetic further shows that there is a decrease in K_m from $7.10x10^{-2} \mu M^{-1}$ to $4.69x10^{-2} \mu M^{-1}$ without inhibitor and with inhibitor respectively and also a decrease in V_{max} from $19.76 \mu M/min$ without inhibition to 14.66μM/min with inhibition which suggests a 39.74% decrease in overall activity of α - glucosidase enzyme in the presence of ethanolic extract of fruit of Persea americana Mill.

CONCLUSIONS

From this work, it has been conjectured that the fruit of Avocado has great and promising potential as pharmaceutical agent, particularly to be developed as anti-diabetic agents through the inhibition of α -glucosidase and α -amylase enzymes. This natural approach is thought to be safer and more effective compared to its synthetic version (e.g., acarbose and

voglibose). Added to this, demonstrated the *in vitro* tests of the antioxidant activity of the fruit extract, which gives evidence and strong biochemical rationale of their therapeutic potential. Therefore, the promising results shall be carried forward to *in vivo* test as well as clinical trial to further validate the activity. Besides, data generated from these studies further promote the traditional use of plants in medicine. Therefore the fruit extract of *P. americana* may play an important role in the development of nutraceuticals and also in the management of oxidative stress induced DM.

ACKNOWLEDGEMENTS

Author extends his thanks and appreciation to the Universiti Sultan Zainal Abidin (UniSZA), 20400 Kuala Terengganu, Malaysia to provide necessary facilities for this work.

AUTHOR'S CONTRIBUTION

Mahadeva Rao US: Writing original draft, review, methodology, data curation, literature survey, editing.

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

CONFLICT OF INTEREST

None to declare.

REFERENCES

- Chaudhary S, Gadhvi K, Chaudhary A. Comprehensive Review On World Herb Trade And Most Utilized Medicinal Plants. Int J Applied Bio Pharm Tech 2010; 1(2): 510–517. https://doi.org/10.11648/j.jps.s.2015030101.18
- Geun Kim H, Sook OH, M. Herbal Medicines for the Prevention and Treatment of Alzheimer's disease. Current Pharm Design 2012; 18(1): 57–75. https://doi.org/10.2174/138161212798919002
- 3. Jokar NK, Noorhosseini SA, Allahyari MS, Damalas CA. Consumers' acceptance of medicinal herbs: An application of the technology acceptance model (TAM). J Ethnopharmacol 2017; 207(June): 203–210. https://doi.org/10.1016/j.jep.2017.06.017
- Jütte R, Heinrich M, Helmstädter A, Langhorst J, Meng G, Niebling W, Trampisch HJ. Herbal medicinal products – Evidence and tradition from a historical perspective. J Ethnopharmacol 2017; 207: 220–225. https://doi.org/10.1016/j.jep.2017.06.047
- Yea SJ, Kim BY, Kim C, Yi MY. A framework for the targeted selection of herbs with similar efficacy by exploiting drug repositioning technique and curated biomedical knowledge. J Ethnopharmacol 2017; 208: 117– 128. https://doi.org/10.1016/j.jep.2017.06.048
- Scheen AJ. Drug treatment of non-insulin-dependent diabetes mellitus in the 1990s. Achievements and future developments. Drugs 1997; 54:355-368. https://doi.org/10.2165/00003495-199754030-00001
- American Diabetes Association: Classification and Diagnosis of Diabetes: Standards of medical care in diabetes-2018. Diabetes Care 2018; 41(Supplement 1): S13-S27. https://doi.org/10.2337/dc18-S002

- Villanueva M, Verti S. Avocado: Green gold mexico, michoacan pride. Government of the State of Michoacan. Mexico; 2007.
- Barry PC. Avocado: the Early Roots of Avocado History. Canku Ota 2001; 33:12-29.
- SK Lee, RE Young, PM Schiffman, CW Coggins. Jr. maturity studies of avocado fruit based on picking dates and dry weight. J Amer Soc Hort Sci 1983; 108:390-394.
- Stradley L. All about avocados: history of the hass Avocado. What's Cooking America.net. Newberg, Yamhill County, Oregon: United States; 2004.
- Sofowora A. Medicinal plants and traditional medicine in Africa. Medicinal plants and traditional medicine in Africa.
 Chichester UK: John Wiley and Sons Ltd. https://www.cabdirect.org/cabdirect/abstract/19842012621
- Wolfe K, Wu X, Liu RH. Antioxidant Activity of Apple Peels. J Agric Food Chem. 2003; 51(3): 609–614. https://doi.org/10.1021/JF020782A
- Swanny Kurniasih Djumali. Isolasi Dan Identifikasi Senyawa Flavonoid dari Fraksi Eter Daun Dewa (Gynura Procumbens Banker) 1997.
- Braca A, Tommasi N, Di-Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia tarapotensis. J Natural Products 2001; 64(7): 892–895. https://doi.org/10.1021/np0100845
- Mathew S, Abraham TE. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem Toxicol. 2006; 44(2): 198–206. https://doi.org/10.1016/j.fct.2005.06.013
- 17. Liu F, Ooi VE, Chang ST. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 1997; 60(10): 763–771.
 - https://doi.org/10.1016/S0024-3205(97)00004-0
- Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophy 1994; 315(1): 161–169. https://doi.org/10.1006/abbi.1994.1485
- Müller L, Fröhlich L, Böhm V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem 2011; 129(1): 139–148. https://doi.org/10.1016/J.FOODCHEM.2011.04.045
- Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radical Biology and Medicine 1999; 26(9): 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Sci Emerg Technol 2007; 8(1): 46–54. https://doi.org/10.1016/j.ifset.2006.06.001
- Ali H, Houghton PJ, Soumyanath A. α-Amylase inshibitory activity of some Malaysian plants used to treat diabetes; with particular reference to *Phyllanthus amarus*. J Ethnopharmacol 2006; 107(3): 449–455.
 https://doi.org/10.1016/j.jep.2006.04.004
- Nagmoti DM, Juvekar AR. *In vitro* inhibitory effects of *Pithecellobiumdulce* (Roxb.) Benth. seeds on intestinal α-glucosidase and pancreatic α-amylase. J Biochem Technol 2013; 4(3): 616–621.
- 24. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J American Chem Soc 1934; 56(3): 658–666. https://doi.org/10.1021/ja01318a036
- Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Persp 2001; 109(SUPPL. 1): 69–75. https://doi.org/10.1289/ehp.01109s169

- Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochimicaet Biophysica Acta (BBA) - General Subjects 2013; 1830(6): 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
- Erlânio O Sousaab, Camila MBA, Mirandaab, Camila B. Nobreab, Aline A. Boligonc, Margareth L. Athaydec, José Costa GM. Phytochemical analysis and antioxidant activities of *Lantana camara* and *Lantana montevidensis* extracts. Indust Crops Prod 2015; 70: 7-15.
 https://doi.org/10.1016/j.indcrop.2015.03.010
- Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Daiber A. Redox Biology European contribution to the study of ROS: A summary of the findings and prospects for the future from the cost action BM1203 (EU-ROS) 2017; 13: 94 162. https://doi.org/10.1016/j.redox.2017.05.007
- Huang W, Cai Y, Zhang Y, Huang W, Cai Y. Natural Phenolic Compounds From Medicinal Herbs and Dietary Plants: Potential use for cancer prevention and dietary plants: potential use for cancer prevention, nutrition and cancer 2017; 62: 1-20. https://doi.org/10.1080/01635580903191585
- Iranshahy M, Javadi B, Iranshahi M, Jahanbakhs SP, Mahyari S, Hassani FV, Karimi G. A review of traditional uses, phytochemistry and pharmacology of *Portula* caoleracea L. J Ethnopharmacol 2017; 205: 158–172. https://doi.org/10.1016/j.jep.2017.05.004
- Liu Y, Wang H, Cai X. Optimization of the extraction of total flavonoids from *Scutellaria baicalensis* Georgi using the response surface methodology. J Food Sci Techn 2015; 52(4): 2336–2343. https://doi.org/10.1007/s13197-014-1275-0
- 32. Tafesse TB, Hymete A, Mekonnen Y, Tadesse M. Antidiabetic activity and phytochemical screening of extracts of the leaves of *Ajugaremota Benth* on alloxan-induced diabetic mice, BMC Complementary and Alternative Medicine. 2017; 1–9.
 - https://doi.org/10.1186/s12906-017-1757-5
- Greenwald, R. Handbook Methods for Oxygen Radical Research. Boca Raton: CRC Press 1985.
- Mark L. Dreher and Adrienne J. Davenport Hass Avocado Composition and Potential Health Effects. Critical Rev Food Sci Nut 2013; 53(7): 738-750. https://doi.org/10.1080/10408398.2011.556759
- 35. Azofeifa G, Quesada S, Boudard F, Morena M, Cristol J, Pe AM, Montpellier U. Antioxidant and Anti-inflammatory in vitro Activities of Phenolic Compounds from Tropical Highland Blackberry (Rubus adenotrichos). J Agric Food Chem 2013; 61: 5798-5804.
- Medini F, Fellah H, Ksouri R, Abdelly C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant *Limonium delicatulum*. J Taibah University for Sci 2014; 8(3): 216–224. https://doi.org/10.1016/j.jtusci.2014.01.003
- Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009; 2(5):270–278. https://doi.org/10.4161/oxim.2.5.9498
- Dufour D, Lavoie S, Laprise C, Legault J. Antioxidant, antiinflammatory and anticancer activities of methanolic extracts from *Ledum groenlandicum* Retzius. J Ethnopharmacol 2007; 111: 22–28. https://doi.org/10.1016/j.jep.2006.10.021
- Repetto MG, Llesuy SF, Aires B. Antioxidant properties of natural compounds used in popular medicine for gastric ulcers. Brazilian J Med Biol Res 2002; 35: 523–534.
- 40. Zhao J, Xu F, Huang H, Gu Z, Wang L, Tan W, Li C. Evaluation on anti-inflammatory, analgesic, antitumor, and antioxidant potential of total saponins from *Nigella* glandulifera seeds. Evidence-Based Com Alt Med 2013: 1-8. https://doi.org/10.1155/2013/827230
- 41. Hiya A Mahmassani, Esther E Avendano, Gowri Raman, Elizabeth J Johnson. Avocado consumption and risk factors

- for heart disease: a systematic review and meta-analysis. The American J Clin Nutrition 2018; 107(4):523-536. https://doi.org/10.1093/ajcn/nqx078
- 42. Kim KH, Moon E, Choi SU, Kim SY, Lee KR. Polyphenols from the bark of Rhusverniciflua and their biological evaluation on antitumor and anti-inflammatory activities. Phytochem 2013; 92: 113–121. https://doi.org/10.1016/j.phytochem.2013.05.005
- 43. Shakya AK. Medicinal plants: Future source of new drugs. Int J Herbal Medicine 2016; 4(4): 59-64.
- 44. King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complication. Histochem Cell Biol 2017; 133: 333-338. https://doi.org/10.1007/s00418-004-0678-9
- Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. Markers of oxidative stress during diabetes mellitus. J Biomarkers 2013; 1-7. https://doi.org/10.1155/2013/378790
- 46. Ullah A. Diabetes mellitus and oxidative stress- A concise review. Saudi Pharm J 2016; 24(5): 547–553. https://doi.org/10.1016/j.jsps.2015.03.013
- 47. Mbhele N, Balogun FO, Kazeem MI, Ashafa T. *In vitro* studies on the antimicrobial, antioxidant and antidiabetic potential of *Cephalaria gigantea*. Bangladesh J Pharmacol 2015; 10(1): 214–221. https://doi.org/10.3329/bjp.v10i1.21716
- 48. Mohamed EAH, Yam MF, Siddiqol MJA, Asmawi MZ, Sadikun A, Ang LF, Chan SH. Potent alpha-glucosidase and alpha-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from *Orthosiphonstamineus* Benth as anti-diabetic mechanism. BMC Comp Alt Med 2012; 12(1): 176. https://doi.org/10.1186/1472-6882-12-176
- 49. Sabiu S, O'Neill FH, Ashafa AOT. Kinetics of α-amylase and α-glucosidase inhibitory potential of *Zea mays Linnaeus* (Poaceae). Stigma maydis aqueous extract: An *in vitro* assessment. J Ethnopharmacol 2016; 183: 1–8. https://doi.org/10.1016/j.jep.2016.02.024
- 50. Kazeem MI, Adamson JO, Ogunwande IA. Modes of inhibition of α -amylase and α-glucosidase by aqueous

- extract of *Morinda lucidabenth* leaf. Bio Med Res Int 2013; 1–6. https://doi.org/10.1155/2013/527570
- Olaokun OO, McGaw LJ, Rensburg IJ, Van, Eloff JN, Naidoo V. Antidiabetic activity of the ethyl acetate fraction of Ficuslutea (Moraceae) leaf extract: comparison of an in vitro assay with an in vivo obese mouse model. BMC Comp Alt Med 2016; 1–12. https://doi.org/10.1186/s12906-016-1087-z
- 52. Rao USM, Subramaniam S. Biochemical evaluation of antihyperglycemic and antioxidative effects of *Morinda* citrifolia fruit extract studied in streptozotocin-induced diabetic rats. Med Chem Res 2009; 18(6): 433-446. https://doi.org/10.1007/s00044-008-9140-1
- 53. Subramaniam SP, Rao USM. Amelioration of diabetic dyslipidemia by *Morinda citrifolia* fruits on streptozotocin induced diabetic rats. J Pharm Res 2010; 3(4): 843-848.
- 54. Masitah K, Fazilah T, Nor Syamira R, Saravanan D, Khamsah Suryati M, Sasidharan S, Zubaidi Abdul L, Rao USM. Utharkar. *In vitro* α-amylase and α-glucosidase inhibition and increased glucose uptake of *Morinda citrifolia* fruit and scopoletin. Research J Pharm Tech 2015; 8(2): 189-193. https://doi.org/10.5958/0974-360X.2015.00034.7
- 55. Rao USM, Bizuneh Adinew. Remnant B-cell stimulative and anti-oxidative effects of *Persea americana* fruit extract studied in rats introduced into streptozotocin-induced hyperglycaemic state. Afr J Tradit Complement Altern Med 2011; 8(3): 210-217. https://doi.org/10.4314/ajtcam.v8i3.65277
- Rao USM, M Haque, AABaig. Insulin stimulative and antioxidative effects of *Persea americana* fruit extract on streptozotocin induced hyperglycemic rats. J Med Bio Sci 2011: 4 (1): 1-10.
- 57. Rao USM, Arirudran B. Clinical evaluation to assess the efficacy of ethanolic extract of avocado fruit on diabetic dyslipidemia studied in stz- induced experimental albino rats. Asian J Research Chem 2011; 4(7): 1131-1136.