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Abstract 
____________________________________________________________________________________________________ 
 
Vitamin A and its derivative retinoic acid (13-cis RA, 9-cis RA, all-trans RA) and 
recent tamibarotene have been shown a broad variety of biological actives in 
human, such as vision, embryonic development, cell growth and cellular 
differentiation and immune function. These precise functions of RA are mediated 
by their retinoic acid receptors (RARs). In the past five decades, retinoic acid (RA) 

proved therapeutic benefits in cancer prevention, in skin diseases and in acute 
promyelocytic leukemia (APL).The elucidation of the molecular basis of vitamin A 
acid and its retinoid pharmacology in APL has been illustrated in several 
publications, the detail molecular model of gene regulation had also been proposed 
by Zhu in earlier 90s. A molecular model is further revised. As an approach to APL 
treatment, one possible the action of retinoic acid (RA), A consensus sequence 
(TCAGGTCA motif ) has been postulated for thyroid hormone (TRE) and retinoic 
acid responsive element (RARE)-containing in the promoter region of target genes. 

High dose of RA-RARE-PML/RARa complexes in intracellular localization 
appears to relieve repressors from DNA-bound receptor, including the dissociation 
of co-repressor complexes N-CoR, SMRT and HDACs from PML-RARa or PML-
RARa/RXR. Also release PML/RARa -mediated transcription repression. This 
transcriptional derepression occurs at RARa target gene promoter. Consequentially, 
PML-RARa chimera converted receptor from a repressor to a RA-dependent 
activator of transcription. Here, oncogenic pml/RARa as constitutive 
transcriptional repressor that blocks myeloid differentiation at promyelocytic 
phenotype. RA can overcome the transcriptional repressor activity of pml/RARa. 

The oncogenic pml/RARa uncovers a pathogenic role in leukemogenesis of APL 
through blocking promyelocytic differentiation. This oncogenic receptor derivative 
pml/ RARa chimera is locked in their "off" regular mode thereby constitutively 
repressing transcription of target genes or key enzymes (such as AP-1, PTEN, 
DAPK2, UP.1, p21WAF/CCKN1A）that are critical for differentiation of 
hematopoietic cells. This is first described in eukaryotes.                        
Keywords: Gene transcription; molecular model of RA, retinoic acid and retinoid 
pharmacology, Vitamin A. 

 

 

INTRODUCTION 

 
The biologic potency of vitamin A has been known for 

near one century. In 1912, Frederick Gowl and 

Hopkins demonstrated that a unknown accessory 

factors found in milk, other than carbohydrates, 

proteins, and fats were necessary for growth in rats. 

Hopkins received a Nobel Prize for this discovery in 

19291-2. By 1913, one of these substances was 

independently discovered by Elmer McCollum and 

Merguerite Davis at the University of Wisconsin 

Madison, and Lafayette Mendel3 and Thomas Burr 

Osborne at Yale University who studied the role of fats 

in the diet4. The "accessory factors" were termed "fat 

soluble" in 19185 and later "Vitamin A" in 19206. In 
1931, Swiss chemist Paul Karrer described the 

chemical structure of vitamin A. Vitamin A was first 

synthesized in 1947 by two Dutch chemists, David 

Adriaan Van Dorp and Jozef Ferdinand Arens. In the 

early 1960s, retinoids were introduced in dermatology 

for treatment of ichthyosis7 and later for psoriasis and 

acne8. In 1975, Vitamin A acid, and the development of 

the synthetic retinoids are the pioneering work of 

Bollag W and Ott F in Sweden9. In vivo, the fat soluble 

vitamin A (retinol) can be reversibly metabolised to the 

aldehyde (retinal) which can in turn, be further 
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oxidised in a non-reversible manner to retinoic acid 

(RA). Enzymes that oxidize retinol to retinaldehyde 

belong to two classes: the cytosolic alcohol 

dehydrogenases (ADHs) belonging to the medium-

chain dehydrogenases/reductase family; and micro-
somal short-chain dehydrogenases/reductases (retinol 

dehydrogenases, RDHs10. The next step in RA 

synthesis is the oxidation of retinaldehyde to RA, 

which is carried out by three retinaldehyde dehydro-

genases (RALDHs):RALDH1, RALDH2 and RALD 

H310,11.The orange pigment of carrots (beta-carotene) 

can be represented as two connected retinyl groups, 

which are used in the body to contribute to vitamin A 

levels12.The physiological and biological actions of this 

class of substances centre on vision, embryonic 

development and production, cellular growth and 

differentiation, skin health, and maintenance of 
immune function. Initial studies had focused on 

vitamin A deficiency and its major consequences: night 

blindness and Xerophthalmia. Fridericia and Holm13 

investigated the influence of dietary A in the rhodopsin 

of the retina. Clearly, the rats lacking the fat-soluble 

vitamin A had a defect in the function of visual purple.  

 

 
Figure 1: Chemical structure of retinol, one of the 

major forms of Vitamin A. 
 

Yudkin14 achieved one of the earliest identifications of 

vitamin A as a component of the retina. Subsequently, 

Wald15 determined the amount of vitamin A present in 

pig retinas. Wald G16,17 was well established the visual 

cycle: light decomposed rhodopsin to retinal and opsin. 

Retinal could either recombine with opsin to reform 

rhodopsin or it converted to free retinol. Retinol could 

reform rhodopsin, but only in the presence of the RPE 

(Kuhne). The further structure and metabolism of 

retinoids implicated that retinaldehyde was the visual 

pigment. More recently, vitamin A and its metabolites 
play a key importance in embryo morphogenesis, cell 

differentiation and clinical practice. Figure 1, chemical 

structure of retinol, one of the major forms of vitamin 

A (Vitamin A-Wikipedia). 

Vision cycle 

Vitamin A is needed by the eye retina, 11-cis-retinal (a 

derivative of vitamin A) is bound to the protein "opsin" 

to form rhodopsin (visual purple) in rods cells17, the 

molecule necessary for both low light (scotopic vision). 

As light enters the eye, the 11-cis-retinal is isomerized 

to all-trans retinal in photoreceptor cells of the retina. 

This isomerization induces a nervous signal (a type of 

G regulatory protein) along the optic nerve to the visual 

center of the brain. After separating from opsin, the all-

trans-retinal is recycled and converted back to the 11-

cis-retinal form via a series of enzymatic reactions. The 
all-trans- retinal dissociates from opsin in a series of 

steps called photo-bleaching. The final stage is 

conversion of 11-cis-retinal rebind to opsin to reform 

rhodopsin in the retina15-17. Kuhne showed that 

rhodopsin in the retina is only regenerated when the 

retina is attached to retinal pigmented epithelium 

(RPE)17. As the retinal component of rhodopsin is 

derived from vitamin A, a deficiency of Vitamin A 

inhibits the reformation of rhodopsin and lead to night 

blindness. Within this cycle, all-trans retinal is reduced 

to all-trans retinol in photoreceptors via RDH8 and 

possible RDH12 in rods, and transported to RPE. In the 
RPE, all-trans retinol is converted to 11-cis retinol, 

then 11-cis retinol is oxidized to 11-cis-retinal via 

RDH5 with possible RDH11 and RDH1110. This 

represents each RDH for the roles in the visual cycle. 

Embryonic development, cell growth and 

differentiation 

The inclusion of retinoic acid in super family of steroid 

and thyroid hormones underlines its importance in the 

development and differentiation in normal tissues. 

Retinoic acid (RA) is lipophilic molecule that act as 

ligand for nuclear RA receptors (RARs), converting 
them from transcriptional repressor to activators11,18 in 

RA signaling pathway. It has been demonstrated that 

retinoic acid was identified as a morphogen (teratogen) 

responsible for the determination of the orientation of 

the limb outgrowth in chicken19, and its retinoic acid 

receptors (RARs) appear at early stage of human 

embryonic development in certain types of tissues19,20. 

Vitamin A plays a role in the differentiation of this 

cerebral nerve system in Xenopus laevi. The other 

molecules that interact with RA are FGF-8, Cdx and 

Hox genes, all participating in the development of 

various structures within fetus. For instance, this 
molecule plays an important role in hindbrain 

development. Both too little or too much vitamin A 

results in the embryo: defect in the central nervous 

system, various abnormalities in head and neck,the 

heart, the limb, and the urogenital system20. With an 

accumulation of these malformations, an individual can 

be diagnosed with DeGeorge syndrome11. In vitro, all-

trans retinoic acid (ATRA) stimulates at least two-fold 

the clonal growth of normal human CFU-GM and early 

erythroid precursor BFU-E21. Cis-RA stimulates clonal 

growth of some myeloid leukemia cells. In suspension 
culture, there was an increase in cell number at day 5 in 

the presence of RA in half of 31 samples, which 

suggest that RA may play a role in the proliferation and 

survival of certain leukemia clones in vitro22. In 

contrast to the enhancement of normal hematopoietic 

proliferation, RA (10-6-10-9 mol/l) is capable of 

inducing differentiation of the F9 mouse 

teratocarcinoma, HL-60 cells23,24 and some blasts from 

patients with promyelocytic leukemia23. Maximum HL-

60 differentiation (90% of cells) occurs after a 6 day 

exposure to 10-6 mol/l retinoic acid. Further in vitro 
studies found that retinoic acid induced differentiation 
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of leukemic blast cells in only 2 of 21 patients with 

AML, both of these patients had promyelocytic 

variant24. These data suggest that retinoids may induce 

maturation of promyelocytes. Retinoic acid also 

inhibits the proliferation of other dermatological 
malignant cells. 

Maintenance of Immune homeostasis 

There is a link between retinoid and immune 

homeostasis. In the presence of retinoic acid,dendritic 

cells located in the gut are able to mediate the 

differentiation of T cells into regulatory T 

cells25,26,which implicate that vitamin A exerts its areas 

of immune response via its against "self" and the 

prevention of host damage. Vitamin A metabolite 

retinoic acid act as a key regulator of TGF-beta-

dependent immune responses. Vitamin A is capable of 

inducing the IL-6-driven induction of proinflammatory 
T(H) 17 cells, promoting anti- inflammatory T reg cells 

differentiation, thus regulating the balance between 

pro- and anti-inflammatory immunity26. 

Retinoic acids in APL treatment 

Acute promyelocytic leukemia (APL, M3 in the FAB 

subtype) represent 5% to 15% of cases of acute 

promyelocytic leukemia27, with characteristic t (15; 17) 

translocation. APL treatment was initial for 13-cis 

RA28-30, later currently all-trans RA31, and recent 

tamibarotene32. In retrospective analysis, 3 of 5 (60%) 

these initial reported cases with 13-cis RA obtained 
complete remission (CR). Two of five obtained a CR 

for 11 months29 and 1 year30 respectively, the similar to 

20 months in isolated CR APL for all-trans RA then 

observation33,34. Another one patient with 13-cis RA 

early died from disseminated candidiasis, while the 

peripheral blood count rose from 0.3x109/l to 6.7x109/l 

with 2.3x109/l mature cells28. Moreover, Castaigne S 

and Chomienne C31 reported that treatment with all-

trans RA alone (45 mg/m2/day) produced CR in 14 of 

22(63.6%) cases of APL. The results confirmed 

Chinese investigation. This also confirmed previous 

isolated case reports of remission induction with 13-cis 
RA. In literature, an isolated APL obtained CR after 

treatment with 13-cis retinoic acid first and repeated 

CR with ATRA in relapse35. Accordingly, ATRA plus 

chemotherapy or ATRA plus ATO regimen is the 

standard of care36. And more, 80% (4/5) CR in newly 

APL and 33% (4/12) CR in relapsed APL were 

achieved after treatment with 9-cis retinoic acid (L-

GD1057) alone37.The data suggest that 9-cis RA is also 

effective agent for remission induction. Long-term 

follow up data, the rates of CR were found from 

72%38-94.3%39 following ATRA treatment. Unlike 
other leukemia, APL has a very good prognosis, with 

long-term survival rates up to near 70%-90%40. Based 

on the total of 2080 APL with ATRA combination 

protocol from seven larger cohort of study36,38,39,41-44, 

the 3-year (range 1-115 months) disease-free survival 

(DFS) and overall survival (OS) were 87.7% and 

90.6% respectively41; 6-year overall survival and 

disease-free survival in CR patients 83.9% and 68.5% 

respectively44; 10-12 year survival about 68.9-77% 

(66.4- 71.4%)36,42. But inclusion of early death45, a total 

of another 1400 APL between 1992 and 2007, and the 
overall early death rate was 17.3%. The 3-year OS 

improved from 54.6% to 70.1% and a significantly 

lower in patients aged over 55 years (only 46.4%)46; 5-

year overall and disease-free survival rates of 51.6% 

and 50.1% respectively (73 APL unpublished data in 

501 army hospital,Tehran,1995-2015);6 year OS 
62% rates47. Thus, the 10-year cumulative incidence of 

deaths in CR was 5.7%, 15.4% and 21.7% in younger 

than 55, 55 to 65, and older than 65 years, 

respectively42. Nowadays, a lot of cohort trials on using 

tamibarotene, 61.5% (24/39) achieved CR including 5 

newly APL and 13 relapse APL twice or more32. 

Among 269 APL with CR underwent maintenance 

random, 4-year relapse-free survival rate was 84% 

(ATRA) and 91% (Tamibarotene). In 52 high risk 

patients, this becomes significant: 50% for ATRA, 

87% for tamibarotene48. In comparative analysis 

among those relapsed APL49, 80% (28/35) achieved 
CR and 22.86% CRm in tamibarotene - ATO versus 

54.2% (19/35) CR with only 2.86-3.7% CRm in ATRA 

- ATO regimen. From another 20 patients with relapsed 

APL, ATRA did not seem to significantly improve the 

response to ATO in patients relapsing from APL50. In 

particular, appreciable benefits of tamibarotene-ATO 

regimen might occur at significantly lower frequency 

of leukocytosis with development of retinoic acid 

syndrome, an important adverse reaction during 

treatment of APL. Therefore, Tamibarotene 

demonstrated more efficacy in both untreated APL 
patients and relapsed who have been treated with 

ATRA and chemotherapy, especially as novel strategy 

in relapsed APL in Japan and others49,51,52. This is 

encouraging perspective. 

RARs Structure 

The retinoic acid receptors (RAR) belong to the large 

family of ligand responsive gene regulatory proteins 

that includes receptors for steroid and thyroid 

hormones53. There are three retinoic acid receptors 

(RAR), RARα, RARβ and RARγ which are conserved 

throughout vetebrates encoded by their different RAR 

(chr 17q21, chr 3p24 and chr12q13) gene, respectively. 
The RARA contains 462 amino acids (aa)54,55, RARB 

consists of 455aa56 and RARG contains 454aa57, 

respectively. The RAR is a type of nuclear receptor 

which acts as a transcription factor that is activated by 

both all-trans RA and 9-cis RA. The RARs have 

different functions and may activate distinct target 

genes. The RARa is expressed in a wide variety of 

different hematopoietic cells54,55; the RARβ in a variety 

of epithelial cells; and the RARr in differentiation of 

squamous epithelia and human skin tissue56,57. All 

RARs contain a variable N-terminal region (A/B), a 
highly conserved cysteine-rich central domain(C) 

responsible for the DNA binding activity, and a 

relatively well-conserved C-terminal half (E) 

functionally its role in ligand binding and nuclear 

translocation. These three main domain are separated 

by a hinge region (D)18,53,58. The central DNA binding 

domain (88-153aa) exhibits an array of cysteine 

residues compatible with the formation of two so-

called zinc finger. Each of them a zinc atom 

tetrahedrically coordinated to four cysteine, and each 

of the hypothetical zinc finger is encoded by a separate 
exon of the receptor gene [Zinc finger 1, 88-108aa, 
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Zinc finger 2, 124-148aa]53-58. The N-terminal zinc 

finger of the DNA binding domain confers hormone 

responsiveness to HREs, determining target gene 

specificity, and responsible for functional discrimi-

nation between HREs whereas the C-terminal finger 
contains the sugar-phosphamide backbone of the 

flanking sequences58. 

 

 
Figure 2: pml/RARa fusion in differentiation block 

at promyelocytic stage in transgenic mice  
(Figure from He LZ, et al., Proc Natl Acad Sci USA, 1997, 94:5302-

07)74 

 

Oncogenic pml/RARa act as constitutive 

transcriptional repressor that blocks neutrophil 

differentiation at the promyelocyte stage  

Acute promyelocytic leukemia (APL) is a clonal 

expansion of hematopoietic precursors blocked at the 

promyelocytic stage. Approximately 98% of APL, 

RARa translocates and fuses with the PML gene on 

chromosome15. The resulting RAR chimeric genes 

encode pml/RARa fusion protein, which is specifically 

expressed in the promyelocytic lineage59,60. In addition 

to oncogenic receptor derivative pml/RARa18,61-63, the 

translocation involves oncogenic TBL1XR1-RARB64 

and NUP98/RARG65, and oncogenic PML-RARG66 

which share high homolog (90%) of three RAR family 
that were also detected in APL rare cases. Most studies 

have shown that PML-RARA is an oncogenic 

transcription factor forming in APL. Without its ligand, 

retinoic acid (RA), PML-RARA functions as a 

constitutive transcriptional repressor, abnormally 

associating NcoR/HDACs complex and blocking 

hematopoietic differentiation. In the presence of 

pharmacological concentration of RA, RA induce the 

corepressors NcoR/HDACs dissociation from PML-

RARA, thereby PML-RARa activates transcription and 

stimulate differentiation18,61,67. In vitro by using a 
dominant negative RAR construct transfected with 

interleukin 3(IL-3)-dependent multipotent hemato-

poietic cell line(FDCP mix A4) and normal mouse 

bone marrow cells, GM-CSF induced neutrophil 

differentiation was blocked at the promyelocyte stage. 

The blocked promyelocytes could be induced to 

terminally differentiate into neutrophils with 

supraphysiological concentration of ATRA68. 

Similarly, over expression of normal RARa transduced 

cells displayed promyelocyte like morphology in 
semisolid culture, and immature RARa transduced cells 

differentiate into mature granulocytes under high dose 

of RA(10-6M)69. Moreover, mutation of the N-CoR 

binding site abolishes the ability of PML-RARa to 

block differentiation70,71. Therefore, ectopic expression 

of RAR fusion protein in hematopoietic precursor cells 

blocks their ability to undergo terminal differentiation 

via recruiting nuclear core pressor N-CoR/histone 

deactylase complex and histone methyltransferase 

SUV39H172. In vivo, transgenic mice expressing PML-

RARA fusion can disrupt normal hematopoiesis, give 

sufficient time, and develop acute leukemia with a 
differentiation block at the promyelocytic stage that 

closely mimics human APL (APL-like syndrome, see 

Figure 2) even in its response to RA in many studies. 

These results are conclusive in vivo evidence that 

PML/RARa is etiology of APL pathogenesis73-79. 

Structure and function analysis of pml/RARA 

uncovered that RAR component of the fusion protein is 

indispensable for its ability to impair terminal 

differentiation, and resolved the pml/RARa as 

constitutive repressor in differentiation block18,61,80-92. 

PML-RARa retains both DNA binding domains and 
ligand binding domains of RARa. RARa is a member 

of nuclear receptors that bind to specific-RARE as 

heterodimers with RXR. By using RARa promoter-

drived receptor plasmid containing RARE, the 

chimeric pml/RARa fusion reduces the induction of 

transcription by RA from a RARE by 50-90% in Hepa 

G cells59. Many other two groups have further shown 

that PML-RARa act as strong transcriptional repressor 

in inhibiting transcription from RAREs to a great 

content than RARa, which may be critical for 

differentiation block in APL. In Rousselot's group 

experiments, HL-60 cells transfected with 15-30 µg of 
PML-RARa fusion in culture show no features of 

granulocytic differentiation after 7 days of incubation 

with 10-7, 10-6 M RA (5.5-9.5% of differentiated cells 

by the NBT test). At 5 µg of PML-RARa plasmid 

concentration, the blockage of RA-dependent myeloid 

differentiation could be overcomes with high doses 

(10-6M) of RA (99% of differentiated cells by NBT 

test) [Figure 3]. The results clearly indicate that PML-

RARa mediated transcriptional repression, as well as 

PML-RARa oncoprotein blocks RA-mediate 

promyelocyte differentiation. By using Xenopus oocyte 
system to uniquely the comparison of the 

transcriptional properties of RAR and PML-RAR is 

due to the lack of endogenous nuclear receptors and the 

opportunity to evaluate the role of chromatin in 

transcriptional regulation. The experimental results 

demonstrated that, indeed, PML-RARA is a stronger 

transcriptional repressor that is able to impose its 

silencing effect on chromatin state even in the absence 

of RXR. Only pharmacological concentration of RA, 

pml/RARA become transcriptional activator function67. 

Moreover, ATRA treatment overcomes the differen-
tiation block through dissociation of corepressor 
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complexes from pml/RARa and transcription 

activation, thereby induces pml-RARA degradation, 

and subsequently promotes promyelocytic differen-

tiation. In vitro experiments, ATRA induce pml-RARA 

itself cleavage into a 85-97kd delta PML-RARA 
product (a truncated pml/RARA form) in RA sensitive 

NB493-96 [Figure 4]. 

 

 
Figure 3: Expression of pml-RARa in HL-60 cells: 
blocks ATRA-induced promyelocytic differentiation (in the 
presence of 10-7 M RA,top), and transcriptional repressive 

properties of pml-RARa in human myeloid cells as βRARE-

luc assay(bottom)(Figure from Rousselot P, Oncogene, 1994, 
9:545-551)80  

 

Delta PML-RARa is not formed in ATRA 
differentiation resistant NB4 subclones93,96, which 

indicate that the loss of PML/RARa may be directly 

linked to ATRA-induced differentiation93,96. This 

induction of PML-RARa cleavage and degradation by 

RA(ATRA,9-cis RA,Am80) involve the proteasome-

dependent93-95 and caspase mediated pathway97, or 

independent of proteasome and caspase cleavage96, and 

possibly ubiquitin-activating enzyme EI-like(UBEIL) 

induction in NB4 cells. This is reason that proteasome 

inhibitor MG-132 and caspase inhibitor ZVAD do not 

block ATRA-induced pml/RARa cleavage and 

differentiation whereas this delta pml-RARA is 
blocked by RARA itself antagonist Ro-41-525396. The 

proteasome-dependent pml/RARA degradation, by 

using proteasome inhibitor lactacystin test, allows APL 

cells to differentiation by relieving the differentiation 

block94. These data suggest a set of multiple molecular 

mechanisms for restoration by RA induced myeloid 

differentiation in APL cells. Next we further examine 

the pml/RARa three region functions; in vitro deletion 

of the RARa DNA binding domain decreased the 

ability of pml/RARa to inhibit Vit D3 and TGF-

induced the myeloid precursor U937and TF-1 cell 
differentiation70. This is also supported by functional 

analysis of DNA binding domain artificial mutation in 

vitro. The RARa zinc finger is a sequence-specific 

DNA binding through which RARa contacts the RA 

target genes. Moreover, deletion of PML coiled-coil 

region also blocked the differentiation capacity of TF-1 

cells70. The coiled-coil region directs the formation of 

pml/RARa homodimers tightly interact with the N-
CoR/HDACs complex, so that transcriptional de-

repression cannot occur at RARA target gene promoter 

even if the presence of ATRA [RA resistant18,90]. 

 
                                 c 

 
Figure 4: Delta pml/RARa cleavage products:  

independent of proteasome and caspase in the presence of 
ATRA (a, b), and pml/RARa act as transcriptional repressor 
even in the presence of ATRA (0.01uM,1uM) in RARE-tu-
luc assay while delta pml/ RARa is less potent activator of 

RARE-tk-leu activation than wild-type RARa (c) in NB4 

cells (Figure from Jing Y, Oncogene, 2003, 22:4083-91)96. In 

vitro, using established subclones of NB4 resistant to 
both ATRA and 9-cis RA, they were significantly less 

able to stimulate transcription of a RARE driven CAT-

reporter gene induction by ATRA and showed altered 

DNA binding activaty on a RARE98. In the resistant 

cases, mut PML stabilizes PML-RARa99. PML-RARA 

with ligand-binding domain (LBD) mutation, ligand 

RA binding with LBD is impaired. Trichostatin A 

(TSA), known as HDAC inhibitor, antagonize HDAC 

activity and thereby enhance histone acetylation 

resulting in open chromatin state86.  

TSA proved useful in therapeutic targeting of 
transcription in two APL patients100,101. In accordance, 

the pml/RARa/RXR target genes are thought to block 

differentiation by constitutively silencing a set of RA-

responsive genes in the control of hematopoietic 

precursor cells. 
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Figure 5: Molecular model of the gene regulation of retinoic acid (RA) action.  

(George Zhu, January 1991, revised in 2012). Schematic alignment of the receptor protein. The two highly conserved regions, identified as 

the putative DNA-binding (C) and hormone- binding (E), a hinge region (D) and the non-conserved variable NH2-terminus (A/B) as 

described above. CAT: CAAT box,CCAAT-enhancer binding proteins(or C/EBPs); GC:GC box; TATA:TATA box. Note: In APL cells, 

PML-RARa fusion point is located in the first 60 amino acids from the N-terminus(A/B) of RARa.(Figure from Zhu G, Curr Pharm 

Biotechnol 2013; 41(9):849-858).  

 

These include Jun/Fos/Ap-1, C/EBPa, C/EBPepsilon, 

DAPK2/PU.1, HOXA7, HOXA9, HOXA10, MEIST, 

SAP30, p21WAF/CCKN1A81,102-106. Five major 

transcription factors, Ap-181, C/EBPepsilon102,103, 

Pu.1/DAPK2104, PTEN105, and p21WAF/CCKN1A106, 
directly regulate genes important in myeloid 

differentiation, such as     G-CSFR, CD11b, Myeloper-

oxidase, Gr-1 or Mac-1. PML/RARA fusion is 

oncogenic transcriptional repressor of five genes. 

Inhibited expression or functions of these five 

transcription factors lead to a block in myeloid 

differentiation, which is a hallmark of APL. 

Importantly, restoring DAPK2 expression in PU.1 

knockdown APL cells partially rescued neutrophil 

differentiation107. DAP-Kinase is a calcium/ 

Calmodulin (CaM)- dependent, cytoskeletal-associated 
protein kinase (ser/thr). In addition, DAPK2 interacts 

with other cyclin- dependent kinase inhibitors such as 

p15INK4b and p21WAF1/CIP, which is needed for the 

cell-cycle arrest in terminal differentiation of 

neutrophils. Moreover, DAPK2 can bind and activate 

the key autophagy gene beclin-1107. PU.1, an ETS 

transcription factor known to regulate myeloid 

differentiation. Silencing of PU.1 in the adult 

hematopoietic tissue produces dysfunctional stem cells 

and impaires granulopoiesis by inducing a maturation 

block. Overexpression of PU.1 overcomes the 

differentiation block in SCa 1+/Lin- HSC with 
transduction of PML/RARa fusion, as measured by the 

Gr-1 and Mac-1 expression108. Thus, pml/RARa 

represses PAPK2/PU.1 - mediated transcription of 

myeloid genes in APL, linking a novel autophagy 

mechanism of pml/RARA degradation109. 

Molecular model of the gene regulation of retinoic 

acid action in APL 

The molecular mechanism of retinoic acid action in 

APL has been proposed in several publications86,89,110. 

Based on review more researches publications27-52,53-109, 

the detail mechanism has also been described by 

Zhu18,111,113. In the absence of RA, RARa functions as a 

nuclear receptor that binds to specific DNA sequence 

called RA responsive element (RARE: AGGTCA 

motif) in target gene promoter, normally as 
heterodimer with RXR. RAR-RXR heterodimer induce 

transcriptional repression throughout chromatin 

remodeling by recruiting corepressor N-CoR/SMRT, 

and histone deacetylases (HDACs) and histone 

methyltransferases. Physiological levels of RA induce 

the dissociation of corepressor complexes and allow for 

the recruitment of co-activators, including histone 

acetylases. Consequentially, RA treatment leads to 

transcriptional activation, thereby trigger expression of 

genes involved in myeloid differentiation11,18,67,84,90. In 

special APL, oncogenic pml/RARa binds to consensus 
sequence of target gene promoter primarily as 

homodimer, also as a heterodimer with RXR. PML-

RARa behave as a constitutive transcriptional repressor 

of RARE-containing genes18,61,67,80-92,102-106 through 

tightly binding with the corepressor complexes, and 

promiscuously interfering with RARa and retinoid acid 

signaling, thereby inducing a differentiation block at 

promyelocytic stage which can be overcome with 

supraphysiological doses of 9-cis or/and ATRA ligand. 

As an approach to APL treatment, one possible the 

action of retinoic acid (RA), A consensus sequence 

(TCAGGTCA motif ) has been postulated for thyroid 
hormone (TRE) and retinoic acid responsive 

element(RARE)-containing in the promoter region of 

target genes114. High dose of RA-RARE-PML/RARa 

complexes in intracellular localization appears to 

relieve repressors from DNA-bound receptor18,70,82,115-

117, including the dissociation of corepressor complexes 

N-CoR, SMRT and HDACs from PML-RARa or 

PML-RARa/RXR18,71,82,84,90. Also release PML/RARa -

mediated transcription repression87. This transcriptional 

derepression occurs at RARa target gene 
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promoter18,84,90. Consequentially, PML-RARa chimera 

converted receptor from a repressor to a RA-dependent 

activator of transcription81,85,87,90,92. The resulting pml-

RARA oncoprotein proteolytic degradation occurs 

through the autophagy-lysosome pathway109 and the 
ubiquitin SUMO-proteasome system(UPS)93-96 as well 

as caspase 397, or lysosomal protease (cathepsin D) 

enzyme or/and EI-like ubiquitin-activating enzyme 

(UBEIL) induction83. An effect is to relieve the 

blockade of pml/RARa-mediated RA dependent 

promyelocytic differentiation, and retinoic acid (9-cis 

RA, ATRA, Am80) in APL therapy (Figure 5, Zhu, 

March 1990- January 1991, revised in 2012). Here, RA 

can overcome the transcriptional repressor activity of 

pml/RARa18,61,67,80-92,102-106. The oncogenic pml/RARa 

uncover a pathogenic role in leukemogenesis of APL 

through blocking promyelocytic differentiation. This 
oncogenic receptor derivative pml/RARa chimera is 

locked in their "off" regular mode thereby constitu-

tively repressing transcription of target genes or key 

enzymes (such as AP-1, PTEN, DAPK2, UP.1, 

p21WAF/CCKN1A)81,102-106 that are critical for 

differentiation of hematopoietic cells. This is first 

described in eukaryotes. 

 

CONCLUSIONS 

 

To date, the discovery of the fat soluble vitamin A has 
been known for over 100 years, more scientists have 

made their contribution in this field. Vitamin A and its 

derivative retinoic acids (RA) have been shown a broad 

variety of biological actives in human, such as vision, 

embryonic development, cellular growth and 

differentiation, and immune function. These precise 

functions of RA are mediated by their RA receptors 

(RAR). Retinoic acids have therapeutic benefits in the 

past five decades the advances in treatment of skin 

diseases and acute promyelocytic leukemia (APL). 

More than ten to twenty laboratories are trying to 

uncovering the molecular model of RA action in APL, 
the detail mechanism had also been proposed by Zhu in 

January 1991. This earlier hypothesis have now been 

demonstrated by structure and functional analysis of 

oncogenic pml/RARa chimera protein in vitro and in 

vivo in numerous studies, and partially mentioned 

above in this paper. This appears to be its centre and its 

main aim in this researching review. This is key 

important useful paradigm and perspective in our 

highlight on ‘genetic dissection of gene regulation in 

clinical cancer biology’; Professor LP Wu says 5 years 

ago. Whether silencing of these RARE-responsive 
target genes such as myeloid transcription factors 

C/EBPa,PU.1 or other unknown key enzymes that are 

really crucial for neutrophil differentiation needs to 

further identification and under investigation. 
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