

Available online at www.ujpronline.com Universal Journal of Pharmaceutical Research An International Peer Reviewed Journal ISSN: 2831-5235 (Print); 2456-8058 (Electronic)

Copyright©2020; The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

REVIEW ARTICLE

LONG CHAIN POLYMERIC CARBOHYDRATE DEPENDENT NANOCOMPOSITES IN TISSUE ENGINEERING Muhammad Shakrad Aslam

Muhammad Shahzad Aslam

School of Traditional Chinese Medicine, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor

Article Info:

Abstract

Article History: Received: 3 June 2020 Reviewed: 7 July 2020 Accepted: 23 August 2020 Published: 15 September 2020

Cite this article:

Aslam MS. Long chain polymeric carbohydrate dependent nanocomposites in tissue engineering. Universal Journal of Pharmaceutical Research 2020; 5(4):65-70.

https://doi.org/10.22270/ujpr.v5i4.441

*Address for Correspondence:

Dr. Muhammad Shahzad Aslam, School of Traditional Chinese Medicine, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Tel: +60 19-300 9674, E-mail: aslam.shahzad@xmu.edu.my The use of nanomedicine has increased enormously, especially in the field of gene delivery and targeted drug delivery. The objective of current review to identify long-chain polymeric carbohydrate dependent nano-composites in tissue engineering such gellan gum incorporated TiO2 nanotubes, Poly(vinyl) alcoholgellan gum-based nanofiber, cross-linked gellan/pva nanofibers, nanocellulose reinforced gellan-gum hydrogels, dextran and sol-gel derived bioactive glassceramic nanoparticles, aminated β -cyclodextrin-modified-carboxylated magnetic cobalt/ nanocellulose composite, chitosan-chitin nanocrystal composite scaffolds, sodium alginate-xanthan gum-based nano-composite scaffolds, nanopullulan/dextran polysaccharide composite, chitosan/carbon hydrox yapatite nanofibers scaffolds, nano-bio composite scaffold of chitosan-gelatin-alginatehydroxyapatite, alginate/gelatin scaffolds with homogeneous nano apatite coating, nano-hydroxyapatite-alginate-gelatinmicrocapsule, poly(ɛ-caprolactone)/keratin nano fibrousmats, keratin nanoparticles-coating electrospun PVA nanofiber, nanohydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid and chitosan/chondroitin sulfate/nano-bioglass. The current review has identified a list of medicinal herbs that have been incorporated into long chain polymeric carbohydrate-based nano-composites.

Keywords: Nano-composites, nanomedicine, polymeric carbohydrate.

INTRODUCTION

Nanomedicine has gained a lot of interest due to its vast application. Physical and chemical attributes of nanomaterials have lengthened its application in the field of biological science and biomedical engineering such as biological imaging, drug delivery, biomolecular sensing, and Infectious Diseases¹. There are different types of nanomaterials such as Inorganic nanomaterials (Graphene, mesoporous silica, gold, magnetic, quantum dots, and layered double hydroxides) and metal-organic frameworks (Zirconium -based metal-organic frameworks, Lanthanide-Based Metal-Organic Frameworks, Oligo nucleotide-Functionalized Metal-Organic Framework)^{2,3}. materials possess intrinsically Inorganic nano physicochemical properties and good biocompatibility, as a result, they are used in different applications such as bio imaging, targeted drug delivery, and cancer therapies, whereas the Metal-organic framework is porous hybrid polymer-metal composites^{4,5}. They possess many biomedical applications due to their excellent porosity, high loading capacity, biodegradebility, and ease of surface modification when compared to others 6,7 .

The selection of material depends upon the biological activity, biocompatibility, and biodegradability. The materials provide an analogous environment to the extracellular matrix (ECM) and provide an induced rate of synthesis or growth of new tissues. Extracellular matrix consists of collagen fibril, glycoproteins such as fibronectin and laminin for attachment. In addition to the extracellular matrix, connective tissues are characterized by fibroblasts and ground substances which are usually fluid, but it can also be mineralized and solid, as in bones⁸. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials9. Monosaccharides and disaccharides are bonded through covalent linkage to develop a long chain of polymer-based carbohydrates. They also consist of other functional groups such as pyruvate, sulfate, and methyl. They can range from linear to branched structure. Exo based polysaccharides are Dextran, alginate, hyaluronic acid, and xanthan, which are synthesized extracellularly by cell wall-anchored enzymes^{10,11,12}.

No.	Material Composition	Characterization	endent nano-composites Application	In-vitro/in-vivo Testing
1		Techniques	01:	relevant to TE and GD
1.	Gellan gum incorporated TiO ₂ nanotubes ¹³	FTIR, XRD and SEM	Skin tissue engineering	Cell viability and proliferation testing
2.	Poly (vinyl) alcohol-gellan gum based nanofiber ¹⁶	SEM and FTIR	3D nanofibrous scaffold.	<i>In-vitro</i> embryonic stem cells (ESCs)
3.	Cross-linked gellan/PVA nanofibers ¹⁸	FESEM	Human dermal fibroblast (3T3L1) cells in tissue engineering application	Cell proliferation behaviour of human dermal fibroblast cells (3T3L1)
4.	Nanocellulose reinforced gellan-gum hydrogels ²⁰	TEM	Annulus fibrous tissue regeneration	Bovine annulus fibrosus culture
5.	Dextran and sol-gel derived bioactive glass ceramic nanoparticles ³¹	FESEM, SEM	Bone tissue engineering	Normal human osteoblasts (HOB) Cells, Cell viability assay
6.	Aminated β-Cyclodextrin-Modified- Carboxylated Magnetic Cobalt/Nanocellulose Composite ²¹	FTIR, XRD, SEM, ESR	Tumor Targeted Gene delivery	DNA Binding Studies, MTT cytotoxicity assay, <i>in vitro</i> gene transfection and gene expression experiments.
7.	3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink ²³	Confocal images, Fluorescence microscopy	Bioprintingi PSCs to support cartilage production in co-cultures with irradiated chondrocytes	Immuno histochemical analysis, Microscopy, Gene expression assays
8.	Chitosan-chitin nanocrystal composite scaffolds ³⁹	SEM, XRD	Bone tissue engineering	Cell adhesion and proliferation
9.	Sodium alginate-xanthan gum based nano-composite scaffolds ⁴⁰	FESEM	Bone tissue engineering	Cell viability
10.	Nano-hydroxyapatite Pullulan/dextran polysaccharide composite ⁴¹	ESEM	Orthopaedic and maxillofacial surgical applications.	Experimental models performed in rat and goat
11.	Chitosan/Carbon nanofibers Scaffolds ³⁸	SEM	Cardiac Tissue Engineering	Culture of Neonatal Rat Cardiomyocytes, Gene Expression
12.	Nano-bio composite scaffold of chitosan–gelatin–alginate– hydroxyapatite ⁴²	ESEM	Bone tissue-engineering	<i>In vitro</i> cell culture using osteoblast cell line, Cell viability, proliferation and attachment over the scaffold, Gene expression study, RNA extraction study
13.	Alginate/gelatin scaffolds with homogeneous nano apatite coating ⁴³	SEM, EDS	Bone tissue engineering.	Proliferation and differentiation of cells on scaffolds The
14.	Nano-hydroxyapatite-alginate-gelatin microcapsule ⁴⁴		Modular bone tissue engineering	Osteogenesis activity
15.	Poly(ε-caprolactone)/keratin nanofibrous mats ⁴⁵	SEM	Vascular tissue engineering	Fibroblast viability assay, Cell attachment
16.	Keratin nanoparticles-coating electrospun PVA nanofiber ⁴⁶	SEM	Neural tissue applications	Cell morphology, adhesion and proliferation
17	Nano/hydroxyapatite/chitosan/chondr oitin sulfate/hyaluronic acid ⁴⁷	SEM	Bone tissue engineering	Cell biocompatibility
18	Chitosan/chondroitin sulfate/nano- bioglass ⁴⁸	XRD, FT-IR, FE- SEM and TEM.	Bone tissue engineering	<i>In-vivo</i> bone regeneration study, <i>In-vitro</i> cell study

Ismail *et al.*, prepared gellan gum incorporated TiO₂ nanotubes using the solvent casting method for skin tissue engineering. TiO₂ nanotubes are a promising tool for cell growth and proliferation for wound healing¹³. They are biocompatible osseointegration¹⁴ and attenuate inflammatory mediators¹⁵. Aadil *et al.*, formulate poly(vinyl) alcohol-gellan gum-based nanofiber using electrospinning and found promising 3D nanofibrous scaffolds for various tissue engineering applications¹⁶. Poly (d, 1-lactide-co-glycolide acid) (PLGA) nanofiber is an alternative biodegradable

polymer when compared with polysaccharide-based nanofiber, which is used in medical devices and drug delivery applications¹⁷. Gellan and PVA cross-link nanofiber is prepared to enhance the physicochemical stability and made biocompatible to human dermal fibroblast (3T3L1) cells¹⁸. Cellulose nanocrystals offer to aggrandize Cytocomp-atibility and improved mechanical properties as compared to carbon or metallic nanotubes¹⁹. Nanocellulose reinforced gellangum hydrogelsare helpful in Annulus fibrosus (AF) defects such as annular tears, herniation²⁰.

Nanocellulose Composite for also useful in the tumortargeted gene delivery. Anirudhan and Rejeena have developed a novel non-viral gene vector consists of aminated b-cyclodextrin modified carboxylated magnetic cobalt/nanocellulose composite, which helps reduce the toxicity but also increased the transgene expression level²¹. Yvette and co-researcher also worked on nanocellulose based gene delivery and designed polyelectrolyte layer assembly of bacterial nanocellulose whiskers with plasmid DNA²². Nguyen et al., developed nanocellulose/alginate Bioink for 3D Bioprinting of iPS Cells. The result suggests supporting cartilage production in co-cultures with irradiated chondrocytes²³. The other researcher also supports the evidence for the development of 3D bioprinting using nanocellulose such as 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration²⁴, wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells²⁵ and development of nanocellulose-based bioinks for 3D bioprinting of Soft Tissue. The problem in all the above research lacks pre-clinical and clinical trials. This leads to motivation for researchers to design a randomized double-blind clinical trial for future commercial prospective. Dextran based hydrogel is

prevalent in a different kind of tissue repair such as cartilage tissue engineering²⁶, vascular tissue engineering²⁷, bone tissue engineering²⁸, skin tissue engineering,²⁹, wound repair³⁰. Nikpour and their co researcher-developed Dextran based bioactive glassceramic nano-composite scaffold. They synthesized nano bioactive glass-ceramic particles (nBGC) by solgel method, whereas the chemical cross-linked technique is used for the preparation of the nanocomposite scaffold. They identify silicon dioxide improves surface reaction to contact with body fluids, and develops active surface area for in vitro/vivo bone tissue engineering³¹. Some important Polysaccharidebased Nano-composites for tissue engineering and gene delivery are mentioned in Table 1. The researcher excluded several nano-composite as of lack of available literature on *in-vitro* or *in-vivo* evaluation. Chitosan-based biomaterial has been well known for the preparation of nontoxic, biodegradable, and biocompatible polysaccharide of $\beta(1-4)$ -linked dglucosamine and N-acetyl-d-glucosamine³². Chitosan has been used to prepare collagen/chitosan porous scaffolds³³, injectable chitosan-based hydrogels³⁴, chitosan-nanohydroxyapatite composite scaffolds³⁵, chitin-based tubes³⁶, chitosan-alginate hybrid scaffolds³⁷, and chitosan/carbon scaffolds³⁸.

Table 2: Some medicinal herbs incorporated into long-chain polymeric carbohydrate-based nano-composites

for tissue regeneration.					
Medicinal Herb	Polysaccharides based Nano- composites	Application			
Lycium barbarum ⁵²	<i>Lycium barbarum</i> polysaccharide encapsulated Poly lactic-co- glycolic acid Nanofibers	Peripheral nerve tissue engineering			
Elaeagnus angustifolia ⁵⁴	EA extract was loaded onto poly(ε-caprolactone)- poly(ethylene glycol)-poly(ε- caprolactone) (PCL-PEG- PCL/EA) nanofibers	Bone tissue engineering			
Aloe barbadensis miller ⁵⁵	Aloe vera incorporated poly(ε- caprolactone)/gum tragacanth nanofibers	Wound dressing			
Stryphnodendron adstringens ⁵⁵	PVA/pineapple nanofibers/Stryphnodendron adstringens	Medical Application			

2. Medicinal herbs incorporated into long-chain polymeric carbohydrate-based Nano-composites

Plants are the essential foundation of medicine. Some essential drugs that are still in use today are derived traditional medicinal herbs⁴⁹. Functional from polysaccharides have a wide variety of application in the field of biomedical engineering and tissue repair⁵⁰. Several medicinal herbs such as *Indigofera* aspalathoides, Azadira chtaindica, Memecylonedule and *Myristica andamanica*, along with a biodegradable polymer, polycaprolactone has been used in combination for skin tissue engineering⁵¹. Table 2 represents some of the medicinal herbs that are used in combination with polysaccharides based Nanocomposites. Lycium barbarum polysaccharides have encapsulated Poly lactic-co-glycolic acid Nanofibers is indicated for peripheral nerve tissue engineering⁵².

Elaeagnus angustifolia is traditionally indicated in osteoarthritis⁵³. *Elaeagnus angustifolia* extract was loaded in poly(ε -caprolactone)-poly (ethylene glycol)-poly(ε -caprolactone) (PCL-PEG-PCL/EA) nanofibers for bone tissue engineering⁵⁴. Aloe vera is incorporated in poly (ε -caprolactone)/gum tragacanth nanofibers to develop the wound dressing⁵⁵. *Stryphnodendron adstringens* is indigenous to Brazil and a well-known wound healing herb on the eastern coast of South America⁵⁶. It has been used in combination with Polyvinyl alcohol and pineapple nanofibers for medical applications⁵⁷.

3. Clinical trials of long-chain polymeric carbohydrate-based Nano-material

Limited available literature on the clinical trial of polysaccharides based Nano-material. Although several material is available and examined *in-vitro* or *in-vivo* a very few materials went for the clinical trial. Most of

the available literature does not seem able to proceed further for clinical trials. A pilot randomized clinical trial of a customized nanotextile wet garment treatment was performed on moderate and severe atopic dermatitis and found useful in the treatment of eczema⁵⁸. A couple of randomized, double-blind clinical trials have been performed on nanohydroxyapatite toothpaste and nano-hydroxyapatite plus 8% Arginine in dentine hypersensitivity intervention^{59,60}. Table 3 represent clinical trials with polysaccharides based Nano-material.

Table 3: Clinical trials with long-chain poly	ymeric carbohydrate-based nano-material.
---	--

Product	Clinical trial	Application
Nano-hydroxyapatite Toothpaste ⁵⁹	Double-Blind Randomized Clinical Trial	Dentine hypersensitivity
Nano-hydroxyapatite and 8% Arginine ⁶⁰	Double-Blind Randomized Clinical Trial.	Dentine hypersensitivity
Nanofibrillar cellulose wound dressing ⁶¹	Preliminary Clinical trial	Wound healing
Tinidazole functionalized homogeneous	Preliminary Clinical trial	Chronic periodontitis
electrospun chitosan/poly (-caprolactone)		
hybrid nanofiber membrane ⁶²		

CONCLUSIONS

Polymer-based carbohydrate molecules composed of long strings of simple sugars (i.e., monosaccharides or disaccharides) that are covalently linked together by glycosides. They are readily usable and can be used for assembling, and modification. development, Polysaccharides also provide 'natural' alternatives to of oil-based synthetic polymers.The creation nanoparticles from polysaccharides is accomplished by ion or covalent cross-linking, ion-complex, and selfassembly following the grafting of the hydrophobic segments onto the polymer backbone. Polymeric chain length and their charges are an important factor in the selection of appropriate methodology for the development of new nanoparticles.

ACKNOWLEDGEMENTS

Author extends his thanks and appreciation to the National Center for Public Health to provide necessary facilities for this work.

AUTHOR'S CONTRIBUTION

Aslam MS: Writing original draft, review, literature survey, editing, methodology, data curation.

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

- Wang X, Liu L-H, Ramstrom O, Yan M. Engineering nanomaterial surfaces for biomedical applications. Exp Biol Med 2009; 234(10):1128-1139 https://doi.org/10.3181/0904-MR-134
- Wang S, McGuirk CM, Ross MB, *et al.* General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles. J Am Chem Soc. 2017; 139(29):9827-9830.

https://doi.org/10.1021/jacs.7b05633

- Pagis C, Ferbinteanu M, Rothenberg G, Tanase S. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catal 2016;6(9):6063-6072. https://doi.org/10.1021/acscatal.6b01935
- Liang R, Wei M, Evans DG, Duan X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun 2014; 50(91):14071-14081. https://doi.org/10.1039/C4CC03118K
- Schaate A, Roy P, Godt A, et al. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem - A Eur J 2011;17(24):6643-6651. https://doi.org/10.1002/chem.201003211
- Beg S, Rahman M, Jain A, *et al.* Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications. Drug Discovery Today 2016. https://doi.org/10.1016/j.drudis.2016.10.001
- Keskin S, Kızılel S. Biomedical Applications of Metal Organic Frameworks. Ind Eng Chem Res
- 2011;50(4):1799-1812. *https://doi.org/10.1021/ie101312k*8. Kusindarta DL, Wihadmadyatami H. The role of extracellular matrix in tissue regeneration. In: tissue regeneration In Tech; 2018.
- https://doi.org/10.5772/intechopen.75728
- Zheng Y, Monty J, Linhardt RJ. Polysaccharide-based nano-composites and their applications. Carbohydr Res 2015;405:23-32.

https://doi.org/10.1016/j.carres.2014.07.016

- Mokhtarzadeh A, Alibakhshi A, Hejazi M, Omidi Y, Ezzati Nazhad Dolatabadi J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. TrAC - Trends Anal Chem 2016;82(June):367-384.
 - https://doi.org/10.1016/j.trac.2016.06.013
- Mokhtarzadeh A, Alibakhshi A, Yaghoobi H, Hashemi M, Hejazi M, Ramezani M. Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert Opin Biol Ther 2016; 16(6):771-785. https://doi.org/10.1517/14712598.2016.1169269
- Rehm BHA. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 2010; 8(8):578-592. https://doi.org/10.1038/nrmicro2354
- 13. Ismail NA, Mat Amin KA, Razali MH. Novel gellan gum incorporated TiO₂ nanotubes film for skin tissue engineering. Mater Lett 2018; 228:116-120. https://doi.org/10.1016/j.matlet.2018.05.140
- Awad NK, Edwards SL, Morsi YS. A review of TiO₂ NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C 2017; 76:1401-1412. https://doi.org/10.1016/j.msec.2017.02.150
- 15. Cimpean A, Neacsu P, Mazare A, Schmuki P. Attenuation of the macrophage inflammatory activity by TiO2

nanotubes via inhibition of MAPK and NF-& kappa;B pathways. Int J Nanomedicine 2015:6455. https://doi.org/10.2147/IJN.S92019

- 16. Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P. Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. J Drug Deliv Sci Technol 2019; 54:101276. https://doi.org/10.1016/j.jddst.2019.101276
- Stachewicz U, Qiao T, Rawlinson SCF, et al. 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration. Acta Biomater 2015; 27:88-100. https://doi.org/10.1016/j.actbio.2015.09.003
- Vashisth P, Pruthi V. Synthesis and characterization of cross-linked gellan/PVA nanofibers for tissue engineering application. Mater Sci Eng C. 2016; 67:304-312. https://doi.org/10.1016/j.msec.2016.05.049
- Habibi Y, Lucia LA, Rojas OJ. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem Rev 2010;110(6):3479-3500.
 - https://doi.org/10.1021/cr900339w
- Pereira DR, Silva-Correia J, Oliveira JM, Reis RL, Pandit A, Biggs MJ. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for *Annulus fibrosus* tissue regeneration. Nanomedicine Nanotechnology, Biol Med 2018; 14(3):897-908. https://doi.org/10.1016/j.nano.2017.11.011
- 21. Anirudhan TS, Rejeena SR. Aminated β -Cyclodextrin-Modified-Carboxylated Magnetic Cobalt/Nanocellulose Composite for Tumor-Targeted Gene Delivery. J Appl Chem 2014; 2014:1-10. https://doi.org/10.1155/2014/184153
- 22. Pötzinger Y, Rabel M, Ahrem H, Thamm J, Klemm D, Fischer D. Polyelectrolyte layer assembly of bacterial nanocellulose whiskers with plasmid DNA as biocompatible non-viral gene delivery system. Cellulose 2018; 25(3):1939-1960. https://doi.org/10.1007/s10570-018-1664-z
- 23. Nguyen D, Hgg DA, Forsman A, *et al.* Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink. Sci Rep 2017;7(1):1-10. https://doi.org/10.1038/s41598-017-00690-y
- 24. Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprint 2016;1-2:22-35. https://doi.org/10.1016/j.bprint.2016.08.003
- 25. Ojansivu M, Rashad A, Ahlinder A, et al. Wood-based nanocellulose and bioactive glass modified gelatin– alginate bioinks for 3D bioprinting of bone cells. Biofabrication 2019;11(3):035010. https://doi.org/10.1088/1758-5090/ab0692
- 26. Wang X, Li Z, Shi T, *et al.* Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering. Mater Sci Eng C 2017; 73:21-30. *https://doi.org/10.1016/j.msec.2016.12.053*
- 27. Liu Y, Chan-Park MB. Hydrogel based on interpenetrating polymer networks of Dextran and gelatin for vascular tissue engineering. Biomaterials 2009; 30(2):196-207. https://doi.org/10.1016/j.biomaterials.2008.09.041
- 28. Ding X, Li X, Li C, et al. Chitosan/Dextran Hydrogel Constructs Containing Strontium-Doped Hydroxyapatite with Enhanced Osteogenic Potential in Rat Cranium. ACS Biomater Sci Eng 2019;5(9):4574-4586. https://doi.org/10.1021/acsbiomaterials.9b00584
- 29. Pan J, Liu N, Sun H, Xu F. Preparation and Characterization of Electrospun PLCL/Poloxamer Nanofibers and Dextran/Gelatin Hydrogels for Skin Tissue Engineering. Liu X, ed. PLoS One 2014; 9(11):e112885. https://doi.org/10.1371/journal.pone.0112885
- 30. Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ. Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng C 2013; 33(5):2958-2966. https://doi.org/10.1016/j.msec.2013.03.025

- 31. Nikpour P, Salimi-Kenari H, Fahimipour F, et al. Dextran hydrogels incorporated with bioactive glass-ceramic: Nano-composite scaffolds for bone tissue engineering. Carbohydr Polym 2018; 190 (March):281-294. https://doi.org/10.1016/j.carbpol.2018.02.083
- 32. Riva R, Ragelle H, des Rieux A, Duhem N, Jérôme C, Préat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polymer Science 2011:19-44. https://doi.org/10.1007/12_2011_137
- 33. Ma L. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomat 2003; 24(26):4833-4841. https://doi.org/10.1016/S0142-9612(03)00374-0
- 34. Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomat 2009; 30(13):2544-2551. https://doi.org/10.1016/j.biomaterials.2009.01.020
- 35. Thein-Han WW, Misra RDK. Biomimetic chitosannanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 2009; 5(4):1182-1197. https://doi.org/10.1016/j.actbio.2008.11.025
- 36. Freier T, Montenegro R, Shan Koh H, Shoichet MS. Chitin-based tubes for tissue engineering in the nervous system. Biomat 2005; 26(22):4624-4632. https://doi.org/10.1016/j.biomaterials.2004.11.040
- 37. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosanalginate hybrid scaffolds for bone tissue engineering. Biomat 2005; 26(18):3919-3928. https://doi.org/10.1016/j.biomaterials.2004.09.062
- 38. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromol 2014; 15(2):635-643. https://doi.org/10.1021/bm401679q
- 39. Liu M, Zheng H, Chen J, Li S, Huang J, Zhou C. Chitosanchitin nanocrystal composite scaffolds for tissue engineering. Carbohydr Polym 2016; 152:832-840. https://doi.org/10.1016/j.carbpol.2016.07.042
- 40. Kumar A, Rao KM, Han SS. Development of sodium alginate-xanthan gum based nano-composite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polym Test 2017; 63:214-225. https://doi.org/10.1016/j.polymertesting.2017.08.030
- 41. Fricain JC, Schlaubitz S, Le Visage C, *et al.* A nanohydroxyapatite–Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomat 2013;34(12):2947-2959.

https://doi.org/10.1016/j.biomaterials.2013.01.049

42. Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC. Fabrication and characterization of novel nanobiocomposite scaffold of chitosan-gelatin-alginatehydroxyapatite for bone tissue engineering. Mater Sci Eng C 2016;64:416-427.

https://doi.org/10.1016/j.msec.2016.03.060

- Luo Y, Li Y, Qin X, Wa Q. 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 2018;146:12-19.
 - https://doi.org/10.1016/j.matdes.2018.03.002
- 44. Nabavinia M, Khoshferrat AB, Naderi-Meshkin H. Nanohydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Mater Sci Eng C 2019; 97(November 2018):67-77. https://doi.org/10.1016/j.msec.2018.12.033
- 45. Li Y, Wang Y, Ye J, Yuan J, Xiao Y. Fabrication of poly(ε-caprolactone)/keratin nanofibrous mats as a potential scaffold for vascular tissue engineering. Mater Sci Eng C 2016; 68:177-183. https://doi.org/10.1016/j.msec.2016.05.117
- 46. Guo T, Yang X, Deng J, Zhu L, Wang B, Hao S. Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. J Mater Sci Mater Med 2019; 30(1):9.

https://doi.org/10.1007/s10856-018-6207-5

47. Hu Y, Chen J, Fan T, *et al.* Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/ hyalur-onic acid for bone tissue engineering. Coll Surf B Bioint 2017; 157:93-100.

https://doi.org/10.1016/j.colsurfb.2017.05.059

- 48. Singh BN, Veeresh V, Mallick SP, et al. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Int J Biol Macromol 2019;133:817-830. https://doi.org/10.1016/j.ijbiomac.2019.04.107
- Aslam MS, Ahmad MS. Worldwide importance of medicinal plants: current and historical perspectives. Recent Adv Biol Med 2016; 02:88. https://doi.org/10.18639/RABM.2016.02.338811
- 50. Li Q, Niu Y, Xing P, Wang C. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chin Med 2018; 13(1):7. https://doi.org/10.1186/s13020-018-0166-0
- Jin G, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrishna S. Tissue engineered plant extracts as nanofibrous wound dressing. Biomat 2013; 34(3):724-734.

https://doi.org/10.1016/j.biomaterials.2012.10.026

52. Wang J, Tian L, He L, *et al.* Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering. Sci Rep 2018;8(1):8669.

https://doi.org/10.1038/s41598-018-26837-z

- Mahboubi M. Elaeagnus angustifolia and its therapeutic applications in osteoarthritis. Ind Crops Prod 2018; 121:36-45. https://doi.org/10.1016/j.indcrop.2018.04.051
- 54. Hokmabad VR, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. Effect of incorporating Elaeagnus angustifolia extract in PCL-PEG-PCL nanofibers for bone tissue engineering. Front Chem Sci Eng 2019; 13(1):108-119. https://doi.org/10.1007/s11705-018-1742-7
- 55. Ranjbar-Mohammadi M. Characteristics of aloe vera incorporated poly (ε-caprolactone)/gum tragacanth nanofibers as dressings for wound care. J Ind Text 2018;

47(7):1464-1477.

https://doi.org/10.1177/1528083717692595

56. Hernandes L, Pereira LM da S, Palazzo F, Mello JCP de. Wound-healing evaluation of ointment from *Stryphnodendron adstringens* (barbatimão) in rat skin. Brazilian J Pharm Sci. 2010; 46(3):431-436. https://doi.org/10.1590/S1984-82502010000300005

nttps://aoi.org/10.1590/S1984-82502010000300005

- 57. Costa LMM, de Olyveira GM, Cherian BM, Leão AL, de Souza SF, Ferreira M. Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind Crops Prod 2013;41(1):198-202 https://doi.org/10.1016/j.indcrop.2012.04.025
- 58. He H, Koh MJ, Lee HY, Ang S Bin. Pilot study of a customized nanotextile wet garment treatment on moderate and severe atopic dermatitis: A randomized clinical trial. Pediatr Dermatol 2020; 37(1):52-57. https://doi.org/10.1111/pde.13981
- 59. Vano M, Derchi G, Barone A, Pinna R, Usai P, Covani U. Reducing dentine hypersensitivity with nanohydroxyapatite toothpaste: a double-blind randomized controlled trial. Clin Oral Investig 2018; 22(1):313-320. https://doi.org/10.1007/s00784-017-2113-3
- 60. Anand S, Rejula F, Sam JVG, Christaline R, Nair MG, Dinakaran S. Comparative Evaluation of Effect of Nanohydroxyapatite and 8% Arginine containing toothpastes in managing dentin hypersensitivity: double blind randomized clinical trial. Acta Medica (Hradec Kral Czech Republic) 2017; 60(3):114-119. https://doi.org/10.14712/18059694.2018.3
- Hakkarainen T, Koivuniemi R, Kosonen M, et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Rel 2016; 244:292-301. https://doi.org/10.1016/j.jconrel.2016.07.053
- 62. Khan G, Yadav SK, Patel RR, Kumar N, Bansal M, Mishra B. Tinidazole functionalized homogeneous electrospun chitosan/poly (ε-caprolactone) hybrid nanofiber membrane: Development, optimization and its clinical implications. Int J Biol Macromol 2017; 103:1311-1326. https://doi.org/10.1016/j.ijbiomac.2017.05.161