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Abstract 

____________________________________________________________________________________________________ 
 
The use of nanomedicine has increased enormously, especially in the field of gene 
delivery and targeted drug delivery. The objective of current review to identify 
long-chain polymeric carbohydrate dependent nano-composites in tissue 
engineering such gellan gum incorporated TiO2 nanotubes, Poly(vinyl) alcohol-

gellan gum-based nanofiber, cross-linked gellan/pva nanofibers, nanocellulose 
reinforced gellan-gum hydrogels, dextran and sol-gel derived bioactive glass-
ceramic nanoparticles, aminated β-cyclodextrin-modified-carboxylated magnetic 
cobalt/ nanocellulose composite, chitosan-chitin nanocrystal composite scaffolds, 
sodium alginate-xanthan gum-based nano-composite scaffolds, nano-
hydroxyapatite  pullulan/dextran polysaccharide composite, chitosan/carbon 
nanofibers scaffolds, nano-bio composite scaffold of chitosan–gelatin–alginate–
hydroxyapatite, alginate/gelatin scaffolds with homogeneous nano apatite coating, 

nano-hydroxyapatite-alginate-gelatinmicrocapsule, poly(ε-caprolactone)/keratin 
nano fibrousmats, keratin nanoparticles-coating electrospun PVA nanofiber, nano-
hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid and 
chitosan/chondroitin sulfate/nano-bioglass. The current review has identified a list 
of medicinal herbs that have been incorporated into long chain polymeric 
carbohydrate-based nano-composites. 
Keywords: Nano-composites, nanomedicine, polymeric carbohydrate. 

 

INTRODUCTION 

 

Nanomedicine has gained a lot of interest due to its 

vast application. Physical and chemical attributes of 

nanomaterials have lengthened its application in the 

field of biological science and biomedical engineering 
such as biological imaging, drug delivery, 

biomolecular sensing, and Infectious Diseases1.  There 

are different types of nanomaterials such as Inorganic 

nanomaterials (Graphene, mesoporous silica, gold, 

magnetic, quantum dots, and layered double 

hydroxides) and metal-organic frameworks (Zirconium 

-based metal-organic frameworks, Lanthanide-Based 

Metal-Organic Frameworks, Oligo nucleotide- 

Functionalized Metal-Organic Framework)2,3. 

Inorganic nano materials possess intrinsically 

physicochemical properties and good biocompatibility, 

as a result, they are used in different applications such 
as bio imaging, targeted drug delivery, and cancer 

therapies, whereas the Metal-organic framework is 

porous hybrid polymer-metal composites4,5. They 

possess many biomedical applications due to their 

excellent porosity, high loading capacity, biodegrade-

bility, and ease of surface modification when compared 

to others6,7. 

The selection of material depends upon the biological 

activity, biocompatibility, and biodegradability. The 

materials provide an analogous environment to the 

extracellular matrix (ECM) and provide an induced rate 
of synthesis or growth of new tissues. Extracellular 

matrix consists of collagen fibril, glycoproteins such as 

fibronectin and laminin for attachment. In addition to 

the extracellular matrix, connective tissues are 

characterized by fibroblasts and ground substances 

which are usually fluid, but it can also be mineralized 

and solid, as in bones8. Polysaccharides offer a green 

alternative to synthetic polymers in the preparation of 

soft nanomaterials9. Monosaccharides and disacchari-

des are bonded through covalent linkage to develop a 

long chain of polymer-based carbohydrates. They also 

consist of other functional groups such as pyruvate, 
sulfate, and methyl. They can range from linear to 

branched structure. Exo based polysaccharides are 

Dextran, alginate, hyaluronic acid, and xanthan, which 

are synthesized extracellularly by cell wall-anchored 

enzymes10,11,12. 
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Table 1: Long chain polymeric Carbohydrate dependent nano-composites in tissue engineering. 
No. Material Composition Characterization 

Techniques 

Application 

 

In-vitro/in-vivo Testing 

relevant to TE and GD 

1. Gellan gum incorporated TiO2 

nanotubes13 

FTIR, XRD 
 and SEM 

Skin tissue 
engineering 

Cell viability and proliferation 
testing 

2. Poly (vinyl) alcohol-gellan gum based 

nanofiber16  

SEM and FTIR 3D nanofibrous scaffold. In-vitro embryonic stem cells 

(ESCs)  

3. Cross-linked gellan/PVA nanofibers18 FESEM Human dermal fibroblast 
(3T3L1) cells in tissue 
engineering application 

Cell proliferation behaviour of 
human dermal fibroblast cells 
(3T3L1) 

4. Nanocellulose reinforced gellan-gum 

hydrogels20 

TEM  Annulus fibrous tissue 
regeneration 

Bovine annulus fibrosus culture  

5. Dextran and sol–gel derived bioactive 

glass ceramic nanoparticles31 

FESEM, SEM Bone tissue engineering 
 

Normal human osteoblasts 
(HOB) Cells, 
Cell viability assay 

6.  Aminated β-Cyclodextrin-Modified-
Carboxylated Magnetic 

Cobalt/Nanocellulose Composite21 

FTIR, XRD, SEM, 
ESR 

Tumor Targeted Gene 
delivery 

DNA Binding Studies, MTT 
cytotoxicity assay, in vitro gene 
transfection and gene expression 
experiments. 

7. 3D Bioprinting of iPS Cells in a 

Nanocellulose/Alginate Bioink23 

Confocal images, 
Fluorescence 
microscopy 

Bioprintingi PSCs to 
support cartilage 
production in co-cultures 

with irradiated 
chondrocytes 

Immuno histochemical analysis, 
Microscopy, Gene expression 
assays  

8. Chitosan-chitin nanocrystal 

composite scaffolds39 

SEM, XRD Bone tissue engineering Cell adhesion and proliferation  

9. Sodium alginate-xanthan gum based 

nano-composite scaffolds40 

FESEM Bone tissue engineering Cell viability 

10. Nano-hydroxyapatite  
Pullulan/dextran polysaccharide 

composite41 

ESEM Orthopaedic and 
maxillofacial surgical 
applications. 

Experimental models performed 
in rat and goat 

11. Chitosan/Carbon nanofibers 

Scaffolds38 

SEM Cardiac Tissue 
Engineering  

Culture of Neonatal Rat 
Cardiomyocytes, Gene 

Expression 

12. Nano-bio composite scaffold of 
chitosan–gelatin–alginate–

hydroxyapatite42 

ESEM Bone tissue-engineering In vitro cell culture using 
osteoblast cell line, Cell 
viability, proliferation and 
attachment over the scaffold, 
Gene expression study, RNA 
extraction study 

13. Alginate/gelatin scaffolds with 

homogeneous nano apatite coating43  

SEM, EDS Bone tissue engineering. Proliferation and differentiation 
of cells on scaffolds The 

14. Nano-hydroxyapatite-alginate-gelatin 

microcapsule44 

 Modular bone tissue 
engineering 

Osteogenesis activity   

15. Poly(ε-caprolactone)/keratin 

nanofibrous mats45 

SEM Vascular tissue 
engineering 

Fibroblast viability assay, Cell 
attachment 

16. Keratin nanoparticles-coating 

electrospun PVA nanofiber46 

SEM Neural tissue applications Cell morphology, adhesion and 
proliferation 

17 Nano/hydroxyapatite/chitosan/chondr

oitin sulfate/hyaluronic acid47 

SEM Bone tissue engineering Cell biocompatibility  

18 Chitosan/chondroitin sulfate/nano-

bioglass48 

XRD, FT-IR, FE-
SEM and TEM.  

Bone tissue engineering In-vivo bone regeneration study, 
In-vitro cell study 

 

Ismail et al., prepared gellan gum incorporated TiO2 

nanotubes using the solvent casting method for skin 

tissue engineering. TiO2 nanotubes are a promising tool 

for cell growth and proliferation for wound healing13. 

They are biocompatible osseointegration14 and 

attenuate inflammatory mediators15. Aadil et al., 
formulate poly(vinyl) alcohol-gellan gum-based 

nanofiber using electrospinning and found promising 

3D nanofibrous scaffolds for various tissue engineering 

applications16. Poly (d, l-lactide-co-glycolide acid) 

(PLGA) nanofiber is an alternative biodegradable 

polymer when compared with polysaccharide-based 

nanofiber, which is used in medical devices and drug 

delivery applications17. Gellan and PVA cross-link 

nanofiber is prepared to enhance the physicochemical 

stability and made biocompatible to human dermal 

fibroblast (3T3L1) cells18. Cellulose nanocrystals offer 
to aggrandize Cytocomp-atibility and improved 

mechanical properties as compared to carbon or 

metallic nanotubes19. Nanocellulose reinforced gellan-

gum hydrogelsare helpful in Annulus fibrosus (AF) 

defects such as annular tears, herniation20.  
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Nanocellulose Composite for also useful in the tumor-

targeted gene delivery. Anirudhan and Rejeena have 

developed a novel non-viral gene vector consists of 

aminated b-cyclodextrin modified carboxylated 

magnetic cobalt/nanocellulose composite, which helps 
reduce the toxicity but also increased the transgene 

expression level21. Yvette and co-researcher also 

worked on nanocellulose based gene delivery and 

designed polyelectrolyte layer assembly of bacterial 

nanocellulose whiskers with plasmid DNA22. Nguyen 

et al., developed nanocellulose/alginate Bioink for 3D 

Bioprinting of iPS Cells. The result suggests 

supporting cartilage production in co-cultures with 

irradiated chondrocytes23. The other researcher also 

supports the evidence for the development of 3D 

bioprinting using nanocellulose such as 3D bioprinting 

of human chondrocyte-laden nanocellulose hydrogels 
for patient-specific auricular cartilage regeneration24, 

wood-based nanocellulose and bioactive glass modified 

gelatin–alginate bioinks for 3D bioprinting of bone 

cells25 and development of nanocellulose-based bioinks 

for 3D bioprinting of Soft Tissue. The problem in all 

the above research lacks pre-clinical and clinical trials. 

This leads to motivation for researchers to design a 

randomized double-blind clinical trial for future 

commercial prospective. Dextran based hydrogel is 

prevalent in a different kind of tissue repair such as 

cartilage tissue engineering26, vascular tissue 

engineering27, bone tissue engineering28, skin tissue 

engineering,29, wound repair30. Nikpour and their co 

researcher-developed Dextran based bioactive glass-
ceramic nano-composite scaffold. They synthesized 

nano bioactive glass-ceramic particles (nBGC) by sol-

gel method, whereas the chemical cross-linked 

technique is used for the preparation of the nano-

composite scaffold. They identify silicon dioxide 

improves surface reaction to contact with body fluids, 

and develops active surface area for in vitro/vivo bone 

tissue engineering31. Some important Polysaccharide-

based Nano-composites for tissue engineering and gene 

delivery are mentioned in Table 1. The researcher 

excluded several nano-composite as of lack of 

available literature on in-vitro or in-vivo evaluation. 
Chitosan-based biomaterial has been well known for 

the preparation of nontoxic, biodegradable, and 

biocompatible polysaccharide of β(1-4)-linked d-

glucosamine and N-acetyl-d-glucosamine32.  Chitosan 

has been used to prepare collagen/chitosan porous 

scaffolds33, injectable chitosan-based hydrogels34, 

chitosan-nanohydroxyapatite composite scaffolds35, 

chitin-based tubes36, chitosan-alginate hybrid 

scaffolds37, and chitosan/carbon scaffolds38. 

Table 2: Some medicinal herbs incorporated into long-chain polymeric carbohydrate-based nano-composites 

for tissue regeneration. 
Medicinal Herb Polysaccharides based Nano-

composites 

Application 

Lycium barbarum52 Lycium barbarum polysaccharide 
encapsulated Poly lactic-co-
glycolic acid Nanofibers 

Peripheral nerve 
tissue engineering 

Elaeagnus 

angustifolia54 

EA extract was loaded onto 

poly(ɛ-caprolactone)-
poly(ethylene glycol)-poly(ɛ-
caprolactone) (PCL-PEG-
PCL/EA) nanofibers 

Bone tissue 

engineering 

Aloe barbadensis 

miller55 

Aloe vera incorporated poly(ε-
caprolactone)/gum tragacanth 
nanofibers 

Wound dressing 

Stryphnodendron 

adstringens55 

PVA/pineapple 
nanofibers/Stryphnodendron 
adstringens 

Medical 
Application 

 

2. Medicinal herbs incorporated into long-chain 

polymeric carbohydrate-based Nano-composites 

Plants are the essential foundation of medicine. Some 

essential drugs that are still in use today are derived 
from traditional medicinal herbs49. Functional 

polysaccharides have a wide variety of application in 

the field of biomedical engineering and tissue repair50. 

Several medicinal herbs such as Indigofera 

aspalathoides, Azadira chtaindica, Memecylonedule  

and Myristica andamanica, along with a biodegradable 

polymer, polycaprolactone has been used in 

combination for skin tissue engineering51. Table 2 

represents some of the medicinal herbs that are used in 

combination with polysaccharides based Nano-

composites. Lycium barbarum polysaccharides have 

encapsulated Poly lactic-co-glycolic acid Nanofibers is 
indicated for peripheral nerve tissue engineering52.  

 

 

Elaeagnus angustifolia is traditionally indicated in 

osteoarthritis53. Elaeagnus angustifolia extract was 

loaded in poly(ɛ-caprolactone)-poly (ethylene glycol)-

poly(ɛ-caprolactone) (PCL-PEG-PCL/EA) nanofibers 
for bone tissue engineering54. Aloe vera is incorporated 

in poly (ε-caprolactone)/gum tragacanth nanofibers to 

develop the wound dressing55. Stryphnodendron 

adstringens is indigenous to Brazil and a well-known 

wound healing herb on the eastern coast of South 

America56. It has been used in combination with 

Polyvinyl alcohol and pineapple nanofibers for medical 

applications57. 

3. Clinical trials of long-chain polymeric 

carbohydrate-based Nano-material 

Limited available literature on the clinical trial of 

polysaccharides based Nano-material. Although several 
material is available and examined in-vitro or in-vivo a 

very few materials went for the clinical trial. Most of 
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the available literature does not seem able to proceed 

further for clinical trials.  A pilot randomized clinical 

trial of a customized nanotextile wet garment treatment 

was performed on moderate and severe atopic 

dermatitis and found useful in the treatment of 
eczema58. A couple of randomized, double-blind 

clinical trials have been performed on nano-

hydroxyapatite toothpaste and nano-hydroxyapatite 

plus 8% Arginine in dentine hypersensitivity 

intervention59,60. Table 3 represent clinical trials with 

polysaccharides based Nano-material.  

 

Table 3: Clinical trials with long-chain polymeric carbohydrate-based nano-material. 
Product Clinical trial Application 

Nano-hydroxyapatite Toothpaste59 Double-Blind Randomized Clinical Trial Dentine hypersensitivity 

Nano-hydroxyapatite and 8% Arginine60 Double-Blind Randomized Clinical Trial. Dentine hypersensitivity 

Nanofibrillar cellulose wound dressing61 Preliminary Clinical trial Wound healing 

Tinidazole functionalized homogeneous 
electrospun chitosan/poly (-caprolactone) 

hybrid nanofiber membrane62 

Preliminary Clinical trial Chronic periodontitis 

 

CONCLUSIONS 

 
Polymer-based carbohydrate molecules composed of 

long strings of simple sugars (i.e., monosaccharides or 

disaccharides) that are covalently linked together by 

glycosides. They are readily usable and can be used for 

development, assembling, and modification. 

Polysaccharides also provide 'natural' alternatives to 

oil-based synthetic polymers.The creation of 

nanoparticles from polysaccharides is accomplished by 

ion or covalent cross-linking, ion-complex, and self-

assembly following the grafting of the hydrophobic 

segments onto the polymer backbone. Polymeric chain 

length and their charges are an important factor in the 
selection of appropriate methodology for the 

development of new nanoparticles. 
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