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Abstract 

____________________________________________________________________________________________________ 
 
Background: In recent papers, it was found that 1,3,4-oxadiazole, 1,3,4-
thiadiazoleand 1,2,4-triazole pharmacophores are present in several drugs, 
tiodazosin and nesapidil (antihypertensive), raltegravir (antiretroviral), Furamizole, 
cefazolin and ceftezole (antibiotics), acetazolamide and methazolamide (carbonic 
anhydrase inhibitors), sulfamethizole (antibacterial), fluconazole, ravuconazole, 

voriconazole, itraconazole, posaconazole, and tebuconazole (antifungal). 
Methods: Thiosemicarbazide was reacted with ethyl p-substituted-phenyl 
glycinate; namely, ethyl p-tolylglycinate (1), ethyl p-methoxyphenylglycinate (2) 
or ethyl p-bromophenylglycinate (3), respectively to give compounds 4-6, which 
then kept with conc. H2SO4 overnight to yield 1,3,4-thiadiazol-2-amine derivatives 
7-9. Compounds 10-18 were yielded by reaction of compounds 7-9 with D-sugars 
namely, D-galactose, D-glucose and/ or D-xylose in ethanol and catalytic amount 
of acetic acid. Compounds (10-18) were then acetylated with acetic anhydride to 
form compounds (19-21). Finely compound 7 was reacted with chloroacetyl 

chloride and/or acetic anhydride to afford compounds 22 and/or 23 respectively.  
Results: Six compounds were evaluated in vitro for their cytotoxic activity on the 
HepG-2 and MCF-7 human cancer cell lines.  
Conclusion: Among the tested compounds, compounds 6 and 13 were found to be 
the more potent for their cytotoxic activity on the two cancer cell lines. 
Keywords: 1,3,4-Thiadiazol-2-amine, Cytotoxicity, HepG-2, MCF-7, 
Thiosemicarbazide. 
 

 

INTRODUCTION 
 

1,3,4-oxadiazole, 1,3,4-thiadiazoleand 1,2,4-triazole 

pharmacophores are present in several drugs viz., 

tiodazosin and nesapidil (antihypertensive), raltegravir 

(antiretroviral), Furamizole, cefazolin and ceftezole 

(antibiotics)1, acetazolamide and methazolamide 

(carbonic anhydrase inhibitors), sulfamethizole (anti-

bacterial)2, fluconazole, ravuconazole, voriconazole, 

itraconazole, posaconazole, and tebuconazole (anti-

fungal)3-8. It is also observed that in response to 

antimicrobial resistance, medicinal chemists have 

intended to concentrate their efforts on the 
development of more potent and effective 

antimicrobial drugs. The hybridization of the 

pharmacophores 1,3,4-Thiadiazole and 4-thiazolidi-

none in one molecular frame could show highly 
effective anti-inflammatory with broad spectrum and 

minimum side effects. Combining both scaffolds was 

expected to inhibit both COX-2 (1, 3, 4-thiadiazole), 

LOX (4-thiazolidinone) and provide better selectivity 

towards COX-2 over COX-1 enzyme due to their large 

volume which will not fit in the smaller COX-1 

binding pocket9.  

1,3,4-Thiadiazoles exhibit a broad spectrum of bio-

logical activity10 such as antimicrobial, anti-

inflammatory, anticancer, antituberculosis, antipara-

sitic, anticonvulsants, antioxidant, herbicidal and 

insecticidal properties. Desaglybuzole 124 (antidiabe-
tic), Acetazolamide 125 (for glaucoma), Furidiazine 

126(antimicrobial) and Butazolamide 127 (diuretic) are 

commercially available 1,3,4-thiadiazole drugs.In 
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recent years, we were put in a project aiming for the 

development of a series of novel anticancer agents11-23 

which contributed in publishing some effective papers 

in this order. Therefore, we synthesized new 2-(p-

Substituted-phenylglycyl)hydrazine-1-carbo-thioamide 
derivatives which were cyclized to 1,3,4-thiadiazole-2-

amine derivatives and then were reacted with D-sugars 

namely, D-galactose, D-glucose or D-xylose in ethanol 

and catalytic amount of acetic acid. Compounds (10-

18) were then acetylated with acetic anhydride to form 

compounds (19-21). Finely, compound 7 was reacted 

with chloroacetyl chloride and/or acetic anhydride to 

afford compounds 22 and/or 23 respectively. Six 

compounds were evaluated in vitro for their 

cytotoxicity activity on the HepG-2 and MCF-7 human 

cancer cell lines. 

 

MATERIALS AND METHODS 

 

All the fine chemicals are purchased from the sigma 

Aldrish company and the pure solvents are purchased 

from El Gomhoria chemical company, Cairo, Egypt. 

The spectroscopic analyses are performed at the 

Microanalytical Center, Cairo university, Cairo, Egypt. 

The biological Activity of the new compounds were 

performed at the biological activity center, Al Azher 

University, Nasr City, Cairo, Egypt. 

Experiments for Chemistry part. 

General Procedures 

TLC was performed using aluminum plates pre-coated 

with silica gel 60 or 60 F254 (Merck) and visualized by 

iodine or UV light (254 nm). Melting points were 

determined on a Böetius PHMK (VebAnalytik 

Dresden) apparatus. The NMR spectra were recorded 

on a Varian Gemini 300 and Bruker DRX 400 

spectrometer at 25ºC, unless otherwise stated. The 

NMR signals were referenced to TMS and the solvent 

shift ((CD3)2SO δ H 2.50 and δ C 39.5). Coupling 

constants are given in Hz and without sign. The IR-

spectra were recorded (KBr) on a Jasco FT/IR-410 
instrument; the UV−VIS spectra were recorded 

(CH3OH) on a M40 Karl Zeiss Jena instrument. Mass 

spectrometry was carried out on a Varian FINNIGAN 

MAT 212 instrument and the elemental analysis on the 

Perkin Elmer 240 instrument. 

2-(p-Substituted-phenylglycyl)hydrazine-1-carbo-

thioamide (4-6) 

To a well stirred suspension of thiosemicarbazide (10 

mmol) in ethanol (5 mL), was added ethyl p-

substituted-phenyl glycinate (1-3); namely, ethyl p-

tolyl glycinate, ethyl p-methoxyphenyl glycinate or 
ethyl p-bromophenyl glycinate, respectively. The 

reaction mixture was refluxed for 4 hrs, and then the 

solvent was reduced under vacuum. The remaining 

residue was left to cool at room temperature and the 

precipitated solid was filtered, dried, and crystallized 

form ethanol to give compounds (4-6), respectively. 

2-(p-tolylglycyl)hydrazine-1-carbothioamide (4) 

Yield: 79%; m.p. 275-277 ºC. IR (KBr) cm-1, ύ: 3375-

3265 (NH2), 3178 (NH), 1721 (C=O), 1609 (C=N); 1H 

NMR (DMSO-d6, 300 MHz): δ 2.1 (s, 3H, CH3), 4.5 (s, 

2H, CH2), 5.73 (br.s, 2H, NH2), 6.46 (d, 2H, Ar-H), 6.9 
(d, 2H, Ar-H), 7.19 (br.s, 1H, NH), 7.55 (br.s, 1H, 

NH), 8.63 (s, 1H, NH). m/z: 238.09 (100.0%), 239.09 

(10.8%), 240.08 (4.5%), 239.09 (1.5%); Elemental 

Analysis for (C10H14N4OS, M. Wt: 238.31) Calcd.  C, 

50.40; H, 5.92; N, 23.51; S, 13.46; Found: C, 50.45;H, 

5.89; N, 23.50; S, 13.49. 

2-(p-methoxyphenylglycyl)hydrazine-1-carbothioa-

mide (5) 

Yield: 79%; m.p. 274-276 ºC. IR (KBr) cm-1, ύ: 3378-

3264 (NH2), 3177 (NH), 1728 (C=O), 1620 (C=N); 1H 

NMR (DMSO-d6, 300 MHz): δ 3.9 (s, 3H, CH3), 4.61 

(s, 2H, CH2), 5.75 (br.s, 2H, NH2), 6.5 (d, 2H, Ar-H), 

6.94 (d, 2H, Ar-H), 7.20 (br.s, 1H, NH), 7.56 (br.s, 1H, 

NH), 8.65 (s, 1H, NH). m/z: 254.08 (100.0%), 255.09 

(10.8%), 256.08 (4.5%), 255.08 (1.5%); Elemental 

Analysis for (C10H14N4O2S, M.Wt: 254.31) Cacd: C, 

47.23; H, 5.55; N, 22.03; S, 12.61; Found: C, 47.43; H, 

5.60; N, 22.0; S, 12.66. 

2-(p-bromophenylglycyl)hydrazine-1-carbothioa-

mide (6) 

Yield: 79%; m.p. 275-277 ºC. IR (KBr) cm-1, ύ: 3380-

3266 (NH2), 3181 (NH), 1730 (C=O), 1621 (C=N); 1H 

NMR (DMSO-d6, 300 MHz): δ 4.62 (s, 2H, CH2), 5.75 

(br.s, 2H, NH2), 6.55 (d, 2H, Ar-H), 6.95 (d, 2H, Ar-

H), 7.25 (br.s, 1H, NH), 7.59 (br.s, 1H, NH), 8.69 (s, 

1H, NH). MS m/z: 303 (M+, 70%). m/z: 301.98 

(100.0%), 303.98 (97.3%), 302.99 (9.7%), 304.99 

(9.5%), 303.98 (4.5%), 305.98 (4.4%), 302.98 (1.5%), 

304.98 (1.4%); Elemental Analysis for (C9H11BrN4OS, 
M.Wt: 303.18) Calcd: C, 35.66; H, 3.66; Br, 26.36; N, 

18.48; S, 10.57; Found: C, 35.45; H, 3.76; Br, 26.46; 

N, 18.55; S, 10.45. 

5-[(p-Substituted-phenylimino)methyl]-1,3,4-thiad-

iazol-2-amine (7-9) 

A mixture of compounds (4-6) (0.05 mol) and conc. 

H2SO4 (20 mL) was kept overnight at room 

temperature, then poured into cold water, neutralized 

with liquid ammonia, and filtered. The product that 

obtained was recrystallized from ethanol–water (1:1) to 

give compounds (7-9). 

5-[(p-tolylamino)methyl]-1,3,4-thiadiazol-2-amine 

(7) 

Yield: 74%; m.p. 270-272 ºC. IR (KBr) cm-1, ύ: 3400-

3283 (NH2, NH), 1620 (C=N); 1H NMR (DMSO-d6, 

300 MHz): δ 2.6 (s, 3H, CH3), 4.62 (s, 2H, CH2), 5.20 

(br.s, 2H, NH2), 6.98 (d, 1H, Ar-H), 7.11 (d, 1H, Ar-

H), 7.24 (d, 1H, Ar-H), 7.76 (d, 1H, Ar-H), 13.17 (s, 

1H, NH); MS m/z: 220 (M+, 70%). Elemental Analysis 

for (C10H12N4S, M.Wt: 220.29) Calcd: C, 54.52; H, 

5.49; N, 25.43; S, 14.55; Found: C, 54.56; H, 5.45; N, 

25.50; S, 14.40. 

5-[(p-methoxyphenylmino)methyl]-1,3,4-thiadiazol-

2-amine (8) 

Yield: 74%; m.p. 269-271 ºC. IR (KBr) cm-1, ύ: 3350, 

3228 (NH2, NH), 3050 (C-H), 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 3.9 (s, 3H, CH3), 4.61 (s, 2H, 

CH2), 5.75 (br.s, 2H, NH2), 6.5 (d, 2H, Ar-H), 6.94 (d, 

2H, Ar-H), 7.56 (br.s, 1H, NH), MS m/z: 236 (M+, 

70%). Elemental Analysis for (C10H12N4OS, M.Wt: 

236.29) Calcd: C, 50.83; H, 5.12; N, 23.71; S, 13.57; 

Found: C, 50.89; H, 5.23; N, 23.71; S, 13.47. 
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5-[(p-bromophenylamino)methyl]-1,3,4-thiadiazol-

2-amine (9) 

Yield: 74%; m.p. 270-272 ºC. IR (KBr) cm-1, ύ: 3350, 

3230 (NH2, NH), 3065 (C-H), 1615 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 4.02 (s, 2H, CH2), 5.75 (br.s, 
2H, NH2), 6.55 (d, 2H, Ar-H), 6.95 (d, 2H, Ar-H), 7.25 

(br.s, 1H, NH);  MS m/z: 284 (M+, 1.90%), 285 (M+, 

7.63%). Elemental Analysis for (C9H9BrN4S, M.Wt: 

285.16) :Calcd: C, 37.91; H, 3.18; Br, 28.02; N, 19.65; 

S, 11.24; Found: C, 37.87; H, 3.23; N, 19.70; S, 11.24. 

N-(D-Galactopyranosyl)-5-[(p-subistitutedamino 

)methyl]-1,3,4-thiadiazol-2-amine (10-18) 

A mixture of 5-[(p-tolylamino)methyl]-1,3,4-thiadiazol 

-2-amine (7), 5-[(p-methoxy phenylmino) methyl]-1,3, 

4-thiadiazol-2-amine (8), 5-[(p-bromophenylamino) 

methyl]-1,3,4-thiadiazol-2-amine (9) (0.01 mol), d-

galactose, d-glucose or d-xylose (0.011 mol) in ethanol 
(30 mL), and a catalytic amount of acetic acid (3 drops) 

were heated at reflux temperature for 4 hrs. The formed 

precipitate was filtered on hot, washed with water 

several times, dried, and recrystallized from ethanol to 

give compounds (10-18), respectively. 
N-(D-sugarpyranosyl)-5-[(p-substituted amino) 

methyl]-1,3,4-thiadiazol-2-amine (10) 

Yield: 88%; m.p. 266-268 ºC. IR (KBr) cm-1, ύ: 3460 

(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 2.6 (s, 3H, CH3), 3.31-3.37 

(m, 2H, H-6′,6′′), 3.62-3.65 (m, 1H, H-5′), 3.94-4.25 
(m, 2H, H-4′,3′), 4.32 (s, 2H, CH2), 4.41 (m, 1H, OH), 

4.77-4.86 (m, 2H, OH and H-2′), 4.98-5.24 (m, 2H, 

2OH), 5.80 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 2H, Ar-

H), 7.10 (d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 2NH ex.); 

Elemental Analysis for (C16H22N4O5S, M.Wt: 382.44) 

Calcd: C, 50.25; H, 5.80; N, 14.65; S, 8.38; Found: C, 

50.45; H, 5.86; N, 14.45; S, 8.34. 

N-(D-Glucopyranosyl)-5-[(p-tolylamino)methyl]-

1,3,4-thiadiazol-2-amine (11) 

Yield: 63%; m.p. 249-251 ºC. IR (KBr) cm-1, ύ: 3460 

(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 2.6 (s, 3H, CH3), 3.31-3.37 
(m, 2H, H-6′,6′′), 3.62-3.65 (m, 1H, H-5′), 3.94-4.25 

(m, 2H, H-4′,3′), 4.32 (s, 2H, CH2), 4.41-4.49 (m, 2H, 

2OH), 4.77-4.86 (m, 2H, OH and H-2′), 4.98-5.04 (m, 

1H, OH), 5.82 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 2H, 

Ar-H), 7.10 (d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 2NH 

ex.); Elemental Analysis for (C16H22N4O5S, M.Wt: 

382.44) Calcd: C, 50.25; H, 5.80; N, 14.65; S, 8.38; 

Found: C, 50.34; H, 5.87; N, 14.55; S, 8.40. 

N-(D-Xylopyranosyl)-5-[(p-tolylamino)methyl]-

1,3,4-thiadiazol-2-amine (12) 

Yield: 68%; m.p. 246-248 ºC. IR (KBr) cm-1, ύ: 3460 
(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 2.6 (s, 3H, CH3), 3.62-3.65 

(m, 2H, H-5′,5``), 3.94-4.25 (m, 2H, H-4′,3′), 4.26 (m, 

2H, CH2), 4.41-4.49 (m, 2H, 2OH), 4.77-4.86 (m, 2H, 

OH and H-2′),  5.49 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 

2H, Ar-H), 7.10 (d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 

2NH ex.); Elemental Analysis for (C15H20N4O4S, 

M.Wt: 352.41) Calcd: C, 51.12; H, 5.72; N, 15.90; S, 

9.10; Found: C, 51.22; H, 5.66; N, 15.90; S, 9.40. 

N-(D-Galactopyranosyl)-5-[(p-methoxyphenylamino 

)methyl]-1,3,4-thiadiazol-2-amine (13) 

Yield: 62%; m.p. 222-224ºC. IR (KBr) cm-1, ύ: 3460 

(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 3.31-3.37 (m, 2H, H-6′,6′′), 

3.62-3.65 (m, 1H, H-5′), 3.81 (s, 3H, CH3), 3.94-4.25 

(m, 2H, H-4′,3′), 4.32 (s, 2H, CH2), 4.41 (m, 1H, OH), 
4.77-4.86 (m, 2H, OH and H-2′), 4.98-5.24 (m, 2H, 

2OH), 5.80 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 2H, Ar-

H), 7.10 (d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 2NH 

Elemental Analysis for (C16H22N4O6S, M. Wt: 398.43) 

Calcd: C, 48.23; H, 5.57; N, 14.06; S, 8.05; Found: C, 

48.33; H, 5.52; N, 14.0; S, 8.0.  

N-(D-Glucopyranosyl)-5-[(p-methoxyphenylmino) 

methyl]-1,3,4-thiadiazol-2-amine (14) 

Yield: 68%; m.p. 251-253 ºC. IR (KBr) cm-1, ύ: 3460 

(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 3.31-3.37 (m, 2H, H-6′,6′′), 

3.62-3.65 (m, 1H, H-5′), 3.81 (s, 3H, CH3), 3.94-4.25 
(m, 2H, H-4′,3′), 4.32 (s, 2H, CH2), 4.41-4.49 (m, 2H, 

2OH), 4.77-4.86 (m, 2H, OH and H-2′), 4.98-5.04 (m, 

1H, OH), 5.82 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 2H, 

Ar-H), 7.10 (d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 2NH 

ex.); m/z: 398.13 (100.0%), 399.13 (17.3%); Elemental 

Analysis for (C16H22N4O6S, M.Wt: 398.43) Calcd: C, 

48.23; H, 5.57; N, 14.06; S, 8.05; Found: C, 48.33; H, 

5.45; N, 14.0; S, 8.12. 

N-(D-Xylopyranosyl)-5-[(p-methoxyphenylamino) 

methyl]-1,3,4-thiadiazol-2-amine (15) 

Yield: 79%; m.p. 281-283ºC. IR (KBr) cm-1, ύ: 3460 
(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 3.62-3.65 (m, 2H, H-5′,5``), 

3.80 (s, 3H, CH3), 3.94-4.25 (m, 2H, H-4′,3′), 4.26 (m, 

2H, CH2), 4.41-4.49 (m, 2H, 2OH), 4.77-4.86 (m, 2H, 

OH and H-2′),  5.49 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 

2H, Ar-H), 7.10 (d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 

2NH ex.); Elemental Analysis for (C15H20N4O5S, 

M.Wt: 368.41) Calcd: C, 48.90; H, 5.47; N, 15.21; S, 

8.70; Found: C, 48.89; H, 5.50; N, 15.27; S, 8.77. 

N-(D-Galactopyranosyl)-5-[(p-bromophenylamino) 

methyl]-1,3,4-thiadiazol-2-amine (16) 

Yield: 74%; m.p. 266-268 ºC. IR (KBr) cm-1, ύ: 3460 
(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 3.31-3.37 (m, 2H, H-6′,6′′), 

3.62-3.65 (m, 1H, H-5′), 3.94-4.25 (m, 2H, H-4′,3′), 

4.32 (s, 2H, CH2), 4.41 (m, 1H, OH), 4.77-4.86 (m, 2H, 

OH and H-2′), 4.98-5.24 (m, 2H, 2OH), 5.80 (d, 1H, J 

= 8.2 Hz, H-1′), 6.46 (d, 2H, Ar-H), 7.10 (d, 2H, Ar-

H), 9.94-10.02 (br.s, 2H, 2NH ex.); Elemental Analysis 

for (C15H19BrN4O5S, M.Wt: 447.30) Calcd: C, 40.28; 

H, 4.28; N, 12.53; S, 7.17; Found: C, 40.35; H, 4.14; 

N, 12.45; S, 7.23. 

N-(D-Glucopyranosyl)-5-[(p-bromophenylamino) 

methyl]-1,3,4-thiadiazol-2-amine (17) 

Yield: 89%; m.p. 270-272 ºC. IR (KBr) cm-1, ύ: 3460 

(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): δ 3.31-3.37 (m, 2H, H-6′,6′′), 

3.62-3.65 (m, 1H, H-5′), 3.94-4.25 (m, 2H, H-4′,3′), 

4.32 (s, 2H, CH2), 4.41-4.49 (m, 2H, 2OH), 4.77-4.86 

(m, 2H, OH and H-2′), 4.98-5.04 (m, 1H, OH), 5.82 (d, 

1H, J = 8.2 Hz, H-1′), 6.46 (d, 2H, Ar-H), 7.10 (d, 2H, 

Ar-H), 9.94-10.02 (br.s, 2H, 2NH ex.); Elemental 

Analysis for (C15H19BrN4O5S, M.Wt: 447.30) Calcd: 

C, 40.28; H, 4.28; N, 12.53; S, 7.17; Found: C, 40.34; 
H, 4.14; N, 12.50; S, 7.19. 
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N-(D-Xylopyranosyl)-5-[(p-bromophenylamino) 

methyl]-1,3,4-thiadiazol-2-amine (18) 

Yield: 77%; m.p. 275-277 ºC. IR (KBr) cm-1, ύ: 3460 

(OH), 3225 (NH), 1681, 1610 (C=N); 1H NMR 

(DMSO-d6, 300 MHz): 3.62-3.65 (m, 2H, H-5′,5``), 
3.94-4.25 (m, 2H, H-4′,3′), 4.26 (m, 2H, CH2), 4.41-

4.49 (m, 2H, 2OH), 4.77-4.86 (m, 2H, OH and H-2′),  

5.49 (d, 1H, J = 8.2 Hz, H-1′), 6.46 (d, 2H, Ar-H), 7.10 

(d, 2H, Ar-H), 9.94-10.02 (br.s, 2H, 2NH ex.); 

Elemental Analysis for (C14H17BrN4O4S, M. Wt: 

417.28) Calcd: C, 40.30; H, 4.11; Br, 19.15; N, 13.43; 

S, 7.68; Found: C, 40.40; H, 4.31; Br, 19.12; N, 13.41; 

S, 7.66. 

N-(Tetra-O-acetyl-D-sugerpyranosyl)-5-[(p-substit-

utedamino)methyl]-1,3,4-thiadiazol-2-amine (19-21) 

To a solution of glycosides 10, 11 and 18 (1 mmol) in 

pyridine (15 mL) was added acetic anhydride (5 mmol) 
and the obtained clear solution was stirred at room 

temperature for 10 hrs. The reaction mixture was 

poured onto crushed ice, and the product that separated 

out was filtered off, washed with sodium hydrogen 

carbonate, water, then dried and recrystalized from 

ethyl acetate to give the acetylated products (19-21), 

respectively. 

N-(Penta-O-acetyl-D-galactopyranosyl)-5-[(p-tolyl-

amino)methyl]-1,3,4-thiadiazol-2-amine (19) 

Yield: 80%; m.p. 256-258 ºC. IR (KBr) cm-1, ύ: 3225 

(NH), 1748 (C=O), 1610 (C=N). m/z: 550.17 
(100.0%), 551.18 (26.0%), 552.17 (4.5%), 552.18 

(3.2%), 552.18 (1.8%), 551.17 (1.5%), 553.17 (1.2%). 

Elemental Analysis for (C24H30N4O9S, M. Wt: 550.58) 

Calcd: C, 52.36; H, 5.49; N, 10.18; S, 5.82. Found; C, 

52.26; H, 5.42; N, 10.18; S, 5.80 

N-(Penta-O-acetyl-D-glucopyranosyl)-5-[(p-tolyla-

mino)methyl]-1,3,4-thiadiazol-2-amine (20) 

Yield: 89%; m.p. 270-272 ºC. IR (KBr) cm-1, ύ: 3255 

(NH), 1748 (C=O), 1608 (C=N) 

m/z: 550.17 (100.0%), 551.18 (26.0%), 552.17 (4.5%); 

Elemental Analysis for (C24H30N4O9S; 550.58) Calcd: 

C, 52.36; H, 5.49; N, 10.18; S, 5.82; Found: C, 52.23; 
H, 5.50; N, 10.22; S, 5.82. 

N-(Tetra-O-acetyl-D-xylopyranosyl)-5-[(p-bromo-

phenylamino)methyl]-1,3,4-thiadiazol-2-amine (21) 

Yield: 84%; m.p. 270-272 ºC. IR (KBr) cm-1, ύ: 3225 

(NH), 1751 (C=O), 1612 (C=N). m/z: 542.05 

(100.0%), 544.05 (97.3%), 543.05 (21.6%), Elemental 

Analysis for (C20H23BrN4O7S, M.Wt: 543.39) Calcd: 

C, 44.21; H, 4.27; Br, 14.70; N, 10.31; S, 5.90; Found: 

C, 44.11; H, 4.34; Br, 14.70; N, 10.23 S, 5.95. 

2-Chloro-N-(5-[(p-tolylamino)methyl]-1,3,4-

thiadiazol-2-yl)acetamide (22) 
To a round bottomed flask, was added compound 17 

(10 mmol) and triethylamine (13 mmol). The mixture 

was stirred in CH2Cl2 (50 mL) at 0ºC, then a solution 

of chloroacetyl chloride (0.83 ml, 11 mmol) in CH2Cl2 

(10 mL) was added to the mixture slowly. The reaction 

mixture was warmed at room temperature and stirred 

for 1 h. After completion of the reaction, the mixture 

was diluted with CH2Cl2 and was mixed with saturated 

NaCl. The organic layer was dried over anhydrous 

sodium sulfate, the solvent was removed under reduced 

pressure, and the remaining solid was washed with cold 
ethanol to afford compound 22. Recrystalized from 

ethyl alcohol. Yield: 77%; m.p 245-247 ºC. IR (KBr) 

cm-1, ύ: 3230 (NH), 1672 (C=O), 1610 (C=N). 1H 

NMR (DMSO-d6, 300 MHz): δ 2.35 (s, 3H, CH3), 4.22 

(s, 2H, CH2) 4.33 (s, 2H, CH2), 6.45 (d, 2H, 2CH), 

7.10 (d, 2H, 2CH), 7.35 (s, 1H, NH ex.), 12.50(s, 1H, 
NH ex.);  m/z: 296.05 (100.0%), 298.05 (32.0%), 

297.05 (13.0%); Elemental Analysis for 

(C12H13ClN4OS, M.Wt: 296.77) Calcd: C, 48.57; H, 

4.42; Cl, 11.95; N, 18.88; S, 10.80; Found: C, 48.59; 

H, 4.36; Cl, 11.99; N, 18.88; S, 10.76. 

N-(5-[(p-Tolylamino)methyl]-1,3,4-thiadiazol-2-yl) 

acetamide (23) 

To a stirred heterogeneous suspension of the amine 7 

(1 mmol) in water (5 mL) was added HCl 6N (in the 

volume range of 240-400 μL) until the solution became 

homogeneous (pH ≈ 1.5). The resulting homogenous 

solution was cooled in an ice bath. To this was then 
added anhydride (1-1.5 mmol) followed by solid 

sodium bicarbonate (185-300 mg) until there was no 

further effervescence or pH of the mixture became ca 

5.5. The precipitate product was filtered, washed with 

water (2 × 1 mL), and dried to give compound (23). 

Recrystalized from chloroform. Yield: 80%; m.p. 266-

268 ºC. IR (KBr) cm-1, ύ: 3235 (NH), 1681 (C=O), 

1612 (C=N). 1H NMR (DMSO-d6, 300 MHz): δ 2.10 

(s, 3H, CH3), 2.35 (s, 3H, CH3), 4.33 (s, 2H, CH2), 6.45 

(d, 2H, 2CH), 7.10 (d, 2H, 2CH), 7.35 (s, 1H, NH ex.), 

12.50(s, 1H, NH ex.);  m/z: 262.09 (100.0%), 263.09 
(13.0%), 264.08 (4.5%), 263.09 (1.5%); Elemental 

Analysis for (C12H14N4OS, M.Wt: 262.33) Calcd: C, 

54.94; H, 5.38; N, 21.36; S, 12.2; Found: C, 54.64; H, 

5.42; N, 21.26; S, 12.02. 

Cytotoxic Activity 

Cell culture conditions 

The cells of human liver carcinoma (HepG-2), and 

human breast adenocarcinoma (MCF-7) were 

purchased from the American Type Culture Collection 

(Rockville, MD). All cells were maintained in a 

DMEM medium, which was supplemented with 10% 

of heat-inactivated fetal bovine serum (FBS), 100U/ml 
of each of penicillin and streptomycin. The cells were 

grown at 37oC in a humidified atmosphere of 5% CO2. 

MTT cytotoxicity assay 

The cytotoxicity activity of the new compounds on the 

HepG-2, and MCF-7 human cancer cell lines were 

evaluated, employing the 3-[4,5-dimethyl-2-thiazolyl)-

2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 

which was grounded on the reduction of the 

tetrazolium salt by the mitochondrial dehydrogenases 

in viable cells24-26.  The cells were dispensed in a 96 

well sterile microplate (3x104 cells/well), followed by 
their incubation at 37oC with a series of different 

concentrations of 10 µl  of each compound or 

Doxorubicin® (positive control, in DMSO) for 48 h in 

serum free medium prior to the MTT assay. 

Subsequently, the media were carefully removed, 40 

µL of MTT (2.5 mg/mL) were added to each well, and 

then incubated for an additional 4 h. The purple 

formazan dye crystals were solubilized by the addition 

of 200 µL of DMSO. The absorbance was measured at 

570 nm applying a SpectraMax® Paradigm® Multi-

Mode microplate reader. The relative cell viability was 
expressed as the mean percentage of viable cells 
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relative to the untreated control cells. All experiments 

were conducted in triplicate and were repeated on three 

different days. All values were represented as mean 

±SD. The IC50s were determined by the SPSS probit 

analysis software program (SPSS Inc., Chicago, IL).  
 

 
Figure 1: Synthesis of compound 4-9. 

 

RESULTS AND DISCUSSION 

 

Thiosemicarbazide was reacted with ethyl p-

substituted-phenyl glycinate; namely, ethyl p-

tolylglycinate (1), ethyl p-methoxyphenylglycinate (2) 

or ethyl p-bromophenylglycinate (3), to give 

compounds (4-6), respectively. Composition and 

structure of compounds (4-6) were proved by their 

elemental and spectroscopic analyses. Their IR spectra 
showed absorption bands characterizing the stretching 

NH2 groups in the range 3380-3266 and NH groups in 

the range 3181-318 cm-1 in addition to C=O which 

showed the absorption bands around 1730-1721 cm-1. 

The 1H NMR spectra of the same compounds inferred 

signals for D2O exchangeable NH2 and NH groups at 

their specific regions. These compounds were then kept 

with conc. H2SO4 overnight to form compounds (7-9) 

respectively. The IR spectra of compounds (7-9)  

showed absorption bands characterizing the NH2 and 

NH groups in the range 3283-3228 cm-1.Also, 1H NMR 

spectra of these compounds inferred signals for D2O 
exchangeable NH2, NH groups at their specific regions 

which helped to prove the structure of such compounds 

(Figure 1). 

On the other hand, a mixture of 5-[(p-substituted 

amino)methyl]-1,3,4-thiadiazol-2-amine derivatives (7-

9) and D-galactose, D-glucose or D-xylose in ethanol 

and acatalytic amount of acetic acid was added to the 

mixture and refluxed to yield compounds (10-18), 

respectively. Their IR spectra showed the 

disappearance of the bands which characterizes for 

NH2 and appearance of the strong and broad bands 
characterizing the poly-hydroxyl chain and NH groups 

in the range 3460-3225 cm-1(Figure 2). The acetylated 

derivatives 19-21 were produced by reacting the 

glycoside derivatives 10, 11 and 18 in pyridine with  

acetic anhydride and the obtained clear solution was 

stirred at room temperature. Composition and structure 

of compounds 19-21 were proved by their elemental 

and spectroscopic analyses. 

 

 
Figure 2: Synthesis of compounds 10-18. 

 

Their IR spectra inferred absorption bands 

characterizing the poly NH groups around 3255-3225 

cm-1.Also, the strong broad bands of OH groups were 

disappeared and replaced by methyl groups (Figure 3). 

 

 
Figure 3: Synthesis of compounds 19-21. 

 
2-Chloro-N-(5-[(p-tolylamino)methyl]-1,3,4-thiadiazol 

-2-yl)acetamide (22) was produced when compound 7 

was reacted with chloroacetyl chloride.While,N-(5-[(p-

Tolylamino)methyl]-1,3,4-thiadiazol-2-yl)acetamide 

(23) was produced when the same compound 7 was 

reacted with acetic anhydride. 

 

 
Figure 4: Synthesis of compounds 22 and 23. 

 

The IR spectra of compounds 22 and 23 inferred two 
different bands, the band of NH group at 3230 cm-1 in 

compound 22 while at 3235  cm-1in compound 23, also, 

the a band of C=O group was at 1672 and 1681 cm-1 in 

the same compound respectively (Figure 4). 
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Figure 5: Dose-dependent cytotoxicity data of the compounds against the HepG-2 human cancer type, 

according to the MTT assay after 48 h of exposure. 

 

 
Figure 6: Dose dependent cytotoxicity data of the compounds on the MCF-7 human cancer type according to 

the MTT assay after 48 h of exposure. 

 

Cytotoxicity activity 

Six of the new compounds were evaluated in vitro for 

their cytotoxic activity against the HepG-2 and MCF-7 

human cancer cell lines through the employment of the 

MTT assay. The percentages of viable cells and their 

IC50 values were measured and were subsequentelly 
assessed with those of the control, Doxorubicin® 

(Figure 5, Figure 6 and Table 1).  

 

Table 1: The cytotoxic IC50 values of the compounds 

according to the MTT assay on the two human cell 

types. 
Compound IC50 (µM) ±SD 

HepG-2 MCF-7 

1 29.7±2.9 12.2±1.5 
4 32±3.1 9.4±0.8 
6 26.3±2.8 9.1±0.6 
7 29.5±2.6 9.1±0.5 
13 24.9±2.5 10.2±1.3 
16 32.1±3.1 15.3±1.7 
Doxorubicin 28.5±1.9 10.3±0.8 

 

The results revealed that, all compounds presented 

dose-dependent cytotoxic activity against both cell 

varieties (Figure 5, Figure 6). The constructed 

deduction from these outcomes is that in assessment 

with the positive control doxorubosin, compounds13 

and 6 were more potent; compounds 7 and 1 displayed 

comparable cytotoxic activity; compounds 4 and 16 

had slightly less activity relative to the positive control, 

regarding human liver cancer (HepG-2) (Figure 5 and 

Table 1). Regarding to breast cancer cells (MCF-7); 
compounds 6, 7, 4, and 13 were more potent, and 

compounds 1 and 16 had slightly less cytotoxic activity 

relative to the positive control (Figure 6 and Table 1).  

 

CONCLUSIONS 

 

New heterocyclic compounds were synthesized by 

reaction of compounds 1, 2 and/or 3 with thio-

semicarbazide to give compounds 4-6,whichthen kept 

with conc. H2SO4 overnight to yield derivatives 7-9, 
then compounds 10-18 were also yielded by reaction of 

compounds 7-9 with D-sugars namely, D-galactose, D-

Glucose or D-xylose in ethanol and a catalytic amount 

of acetic acid. Compounds 10-18 were then acetylated 

with acetic anhydride to form compounds 19-21. 

Finely, compound 7 was reacted with chloroacetyl 

chloride and/or acetic anhydride to afford compounds 

22 and/or 23 respectively. Six new derivative 

compounds were designated in vitro for their cytotoxic 

activity on the HepG-2 and MCF-7 human cancer cell 

lines where compounds 6 and 13 were found to be 

more potent for their cytotoxic activity on the two 
cancer cell lines as compared with the reference drug 

Doxorubicin. 
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