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Abstract 

____________________________________________________________________________________________________ 
 
The worthwhile intellectual synthesis proposing that nothing makes sense except in 
light of context has also revolutionized pharmaceutical science putting patients’ 
genomic context at the center of attention in a rapidly developing area known as 
pharmacogenomics. As a result, an alternative approach to medicine referred to as 
personalized medicine was born considering the individual-specific genomic 
context the hardcore of any diagnostic, prognostic, and therapeutic intervention. 
Therefore, a considerable need has been created to address questions based on the 
underlying genotypic characteristics of patients. Depressive spectrum disorders are 

a cluster of closely-linked psychiatric disorders with a growing incidence rate 
across the world. Although there are multiple therapeutic approaches to treating 
depressive spectrum disorders, pharmacotherapy is still considered one of the most 
effective strategies. Among the therapeutic antidepressant drugs, selective 
serotonin reuptake inhibitors (SSRIs) are most widely prescribed. Fluoxetine 
(FLX) is a highly valued SSRI which is broadly ordered by psychiatric 
practitioners to treat miscellaneous psychological disorders, including depressive 
spectrum disorders, anxiety spectrum disorders, and obsessive-compulsive 

disorder. Although FLX therapy can bring about a positive therapeutic effect on a 
considerable proportion of depressed patients, it does not elicit a favorable 
response in 30-40% of patients owing to the presence of genomic variations 
negatively affecting the pharmacokinetic and pharmacodynamic characteristics of 
this medication. This challenging fact has led us to conduct current research on 
how genotypic variations at the inter-individual level can heavily affect the 
response to FLX therapy.  
Keywords: Antidepressant, depression, fluoxetine, pharmacogenetics, 
pharmacogenomics, SSRIs. 

 

 

INTRODUCTION 

 
Fluoxetine (FLX) is an antidepressant medication 

classified under the category of selective serotonin 

reuptake inhibitors (SSRIs) with over-the-counter 

access1. This drug is considered one of the most 

commonly prescribed antidepressants in conventional 

pharmacotherapy for psychiatric disorders which are 

primarily indicated for controlling the neuropsycho-

logical signs and symptoms caused by depressive 

spectrum disorders2, obsessive-compulsive disorder 

(OCD)3, bulimia nervosa4, anxiety spectrum 

disorders5, and premenstrual dysphoric disorder6. 

According to the evidence, FLX may reduce the risk of 

suicide in people over 65 years of age and may exert a 

therapeutic effect on premature ejaculation as well6. 

Fluoxetine available on the market which is prescribed 

for clinical indications is a racemic mixture consisting 
of (+)-S- and (-)-R-enantiomers which metabolically 

get trans-formed to S- and R-norfluoxetine, respective-

ely7. FLX hydrochloride is the hydrochloride salt form 

of FLX, a diphenhydramine derivative8. 

Pharmacodynamics 
Regarding the FLX action pathway, pharmacodynamic 

analyses show that FLX inhibits serotonin reuptake 

using targeting the serotonin transporter which is also 

referred to as sodium-dependent serotonin transporter9. 

The serotonin transporter (5-HTT/SERT) is a protein 

particularly found within plasma membrane which 

facilitates synaptic cleft-into-presynaptic neuron 
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translocation of serotonin; consequently, the action of 

serotonin is terminated and this molecule is salvaged in 

a sodium-dependent manner. As strongly supported by 

the evidence, brain-derived neurotrophic factor 

(BDNF) and its receptor known as “neurotrophic 
tyrosine kinase receptor type 2 (NTRK2)” are up-

regulated in response to administration of anti-

depressant therapeutics10. This alteration can conseq-

uently pave the way for the pathogenesis of both 

metabolic and neurological disorders10. Receptor 

binding studies showed that FLX shares a weak 

binding affinity with histamine, serotonin, opioid, 

muscarinic, and dopamine receptors11. In vitro studies 

reported FLX-induced inhibition of agonist-activated 

Ca2+ influx in human α3β4 nicotinic acetylcholine 

receptors (CHRNA3, CHRNB4), human α7 nicotinic 

acetylcholine receptors (CHRNA7), and human α4β2 

(CHRNA4, CHRNB2)12. Additionally, an in vitro 

study demonstrated a FLX-induced antagonistic 

activity upon five cloned human muscarinic choli-

nergic receptors (M1, M 2, M3, M4, and M5) 
expressed in Chinese hamster ovary cells (CHO-K1) 

with a Kd> 1 microM13. Another in vitro study 

reported that FLX exerted an inhibitory effect on 

cAMP/Ca (2+)-responsive element (CRE)-directed 

gene transcription/CRE-binding protein (CREB)14. To 

gain more information, also check STITCH is available 

at http://stitch.embl.de/ (Figure 1) and SSRI 

pharmacodynamics pathway can be retrieved from 

PharmGKB15.  

 

 
Figure 1: The confidence view of the fluoxetine-target interaction network retrieved from STITCH. 

 

Pharmacokinetics 
Fluoxetine hydrochloride is largely absorbed through 

the gastrointestinal tract after oral administration. The 

oral bioavailability of FLX has not been fully 

elucidated; however, it is estimated that the least FLX 

oral absorption falls within the range of 60-80%. The 

systemic bioavailability of FLX appears to be less than 
90% as a consequence of first-pass metabolism in liver 

reaching approximately 85% and the plasma concen-

tration of FLX reaching maximum within 6-8 hours 

after administration16. In plasma, it binds to plasma 

carrier proteins, especially albumin and α1-acid 

glycoprotein17. Among antidepressants, FLX and its 

main active metabolite, norfluoxetine, are slowly 

eliminated from the body as they able to exert a self-

inhibitory effect upon their metabolism over time. This 

is why the elimination half-life of FLX and norfluo-

xetine is more extended than other SSRIs being 2-4 

days and 7-15 days, respectively18. As a result, the 
plasma concentration of FLX and its active metabolite 

are continuously enhanced throughout the first few 

weeks after the initiation of treatment, and only after a 

four-week period their plasma concentration is 

stabilized19. Furthermore, the concentration of FLX and 

its metabolites have been reported to continuously 

increase in brain within, at least, the first five-week 

period following the intake7. As a result, it takes at 

least one month following treatment initiation in order 

for the maximum benefits of FLX therapy to be 

observed. For instance, a 6-week controlled clinical 

trial has demonstrated that FLX can exert its sustained 

therapeutic response in patients after 29 days20, and on 

the other hand, it may take several weeks for the drug 

to be completely excreted from the body. As a striking 

feature, during the first week after the treatment is 

stopped, FLX concentration in the brain decreases by 

50%7. Furthermore, it has been shown that 4 weeks 

after discontinuation of norfluoxetine administration, 

its plasma concentration was approximately 80% of the 
level obtained after one week of treatment initiation, 

and it was still detectable in the blood after 7 weeks 

following treatment discontinuation21. 

Transport, Metabolism, and Excretion  
Fluoxetine is primarily eliminated through oxidative 

metabolism and conjugation22. Urinary excretion plays 

the central role in FLX excretion. Less than 10% of 

FLX is excreted unchanged and the rest is excreted as 

FLX glucuronide23. As confirmed at both in vitro and 

in vivo studies, miscellaneous cytochromes including 

P450 (CYP) 2D6, CYP2C9, CYP3A4, CYP2C19, 
CYP2D6, and CYP3A5participate in the biological 

transformation of S- and R-FLX into S- and R-

norfluoxetine, as N-desmethyl metabolites, in human 

liver microsomes24. Moreover, at in vitro level, it has 

been reported that FLX has exerted an inhibitory effect 

upon CYP2C9, CYP2C19, and CYP3A425. For further 

information see the fluoxetine pharmacokinetic 

pathway in PharmGKB15.  

Based on a seminal review26, FLX is a member of the 

fourth generation of multidrug resistance (MDR) 

reversal agents (chemo-sensitizers); however, 

according to research into disrupting multi-drug 
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resistance (ABCB1) gene in mice, FLX is not a P-

glycoprotein substrate27. It has recently been shown 

that FLX exposure makes E. coli multiple antibiotic 

resistant (MAR) through mutagenesis mediated by 

production of reactive oxygen species (ROS)28. 

Pharmacogenomics (PGx) 
Fava and colleagues (2015) carried out a systematic 

review of withdrawal syndrome secondary to 

discontinued intake of SSRIs29 and recommended that 

clinicians should add SSRIs to the list of drugs capable 

of inducing withdrawal symptoms upon abrupt 

discontinuation similar to psychotropic drugs such as 

barbiturates and benzodiazepines. The major 

withdrawal signs and symptoms produced by FLX 

discontinuation include sleep disturbance, somno-

lence30, light-headedness, vertigo, delirium30, dystonic 

reactions31, and prolonged rebound cataplexy32. 
Another study reported minor and short-term 

symptoms following an acute overdose of FLX 

including hyponatremia, seizure, and rhabdom-

yolysis33. According to a research carried out on 374 

depressed Caucasian patients, there exist a strong 

association between rs908867 single-nucleotide 

polymorphism (SNP) in 5' upstream region of BDNF 

gene encoding brain-derived neurotrophic factor 

(BDNF), as an integral predictor of response to 

antidepressant therapy34, and complete clinical 

remission of major depressive episodes after receiving 
an antidepressant medication (FLX, paroxetine, 

sertraline, citalopram or venlafaxine)35.  

SNPs reported in phosphodiesterase genes including 

PDE8B (rs884162 SNP), PDE6A (rs2544934), 

PDE1A(rs1549870), and PDE11A (rs1880916 and 

rs3770018) maintain significant association with 

clinical remission responsive to FLX therapy36. In 

addition, it has been reported that polymorphisms in 

genes encoding catechol-O-methyltransferase (COMT) 

and monoamine oxidase type A (MAO-A) serves a 

possible role in setting the stage for development of 

perinatal serotonergic symptoms following the 
exposure to FLX or other SSRIs in uterine37. 

Furthermore, another research revealed a significant 

association between 3 polymorphic variants of gene 

encoding glycogen synthase kinase-3β (GSK3B), 

namely rs13321783, rs334558, and rs2319398 with 4-

week response to SSRI therapy38. It has also been 

shown that the presence of serotonin receptor 1A 

(HTR1A)-1019C/C and serotonin transporter (SERTP 

R)l/l variants of SLC6A4 gene in depressed Chinese 

patients elicits a more favorable response to FLX 

therapy39. As per reports, A-1438G polymorphism in 
the 5-hydroxytriptamine receptor 2A (HTR2A) gene is 

associated with provoked side effects such as 

exacerbated gastrointestinal adverse reactions in 

response to FLX and other antidepressants40. Another 

research concentrated upon corticotropin-releasing 

hormone (CRH) receptor1 (CRHR1), as an integral 

mediator of CRH-mediated depression41, reported an 

association between response to FLX therapy in those 

MDD patients dealing with a high level of anxiety and 

homozygous GAG haplotype of three SNPs as well as 

rs242941 G/G genotype in CRHR1 gene42. Based on 
the other report about variants of the gene encoding 

plasminogen activator inhibitor type 1 (SERPINE1) in 

MDD patients, the haplo type of rs1799889-4G and 

rs2227631-G variants were found to be lower in 

responders to antidepressant treatment in comparison 

with non-responders43. In this line, the tryptophan 
hydroxylase 2 (TPH2) gene is among the loci having 

been utilized to investigate the response to therapy in 

MDD patients. An elucidating investigation was 

conducted on genotype analysis of the TPH2 gene 

which showed that rs2171363 heterozygous genotype 

is more frequent in MDD patients responding favorably 

to antidepressant therapies compared to non-

responders44. According to evidence, variants found in 

GTP-cyclohydrolase I feedback regulator (GCHFR) 

gene have been reported to affect the response to SSRI 

therapy45. Computational binding site prediction 

analyses performed on FLX and paroxetine proposed 
that these SSRI drugs display strong binding affinity 

with the adrenergic β-1 receptor (ADRB1), similar to 

β-blockers46. Considerably, a study reported that 

rs1801253 (Arg389Gly) SNP in the ADRB1gene plays 

a vital role in how paroxetine and FLX can exert their 

β-blocking effects on both systolic blood pressure and 

heart rate in comparison with other SSRIs not being 

able to produce beta-blocking effects46. 

Considering another perspective, a dramatic downr-

egulated expression of tyrosine hydroxylase has been 

observed as a response to the chronic administration of 
antidepressants such as FLX47. Additionally, altered 

mRNA level of CRH48 and modulated mRNA 

expression of G protein alpha 12 (GNA12), alpha Q 

(GNAQ), and alpha S (GNAS) sub-units have been 

reported in rat brain in response to FLX treatment49. 

Clinical Features  
The SSRIs such as FLX and sertraline are used as the 

drug of choice to treat MDD patients because of their 

advantages including low toxicity and tolerability50. 

Presently, two mysteries surround SSRIs prescription. 

Firstly, complete clinical remission is not achieved in 

30–40 % of MDD patients proposing the hypothesis 
that response to SSRI therapy is still a serious 

challenge51. Secondly, it takes 2-3 weeks for the 

improvement to be clinically observable once SSRI 

therapy is initiated52. These challenging statuses 

regarding the therapeutic response to SSRIs have led 

scientists to seek reliable and handy markers for rapid 

assessment of response to FLX therapy in MDD 

patients to minimize pain and morbidity of resistant 

phenotypes. Evidence show that genetic predis-

positions play an inevitable role in therapeutic response 

to antidepressant therapy53. As strongly supported, 
genetic variation makes individual and population 

differences in the efficacy and safety of antidepressant 

drugs54. To recapitulate, finding new biomarkers and 

monitoring tools to screen the responsiveness of MDD 

patients to SSRIs such as FLX is of high significance 

in saving time for therapeutic interventions, costing up 

the therapeutic steps, and avoiding drug toxicity in 

patients (=phenotypes) with underlying genotypes or 

genomic features not responding to conventional 

antidepressant pharmacotherapy. 
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Personalized Medicine   
Personalized medicine is an ultra-modern approach to 

provide subjects with individual-specific preventive 

and therapeutic services. To reach this aim, novel 

diagnostic and/or therapeutic methodologies such as 
those based on genomic analyses are applied to address 

the issues in order to analyze and predict human 

pathology and develop individualized diagnostic, 

prognostic, and therapeutic approaches. This revoluti-

onary approach aims for early and accurate diagnosis 

and prediction, prognosis optimization, and consistent 

personalization and individualization of clinical 

interventions55. 

Polymorphisms of the 5-HTT (SLC6A4) 
The serotonin transporter (5-HTT) plays a significant 

role in recycling serotonin and regulating its 

concentration both in the synaptic cleft and outside the 
synapse. The SSRIs pass their act on 5-HTT towards 

the prevention of serotonin reuptake56. Therefore, the 

human 5-HTT (SLC6A4) gene which encodes serotonin 

transporter can act as a suitable candidate to provide us 

with illuminating insights into the pharmacogenomics 

of SSRIs. Noticeably, there exist a 5-HTT gene-linked 

polymorphic region as a biallelic polymorphism at 

promotor site of 5-HTT gene (SLC6A4)57. Several 

studies have concentrated on how genomic variations 

in the SLC6A4 gene affect the therapeutic response to 

SSRI therapy58,59. For instance, some reports indicated 
that an inserted sequence containing forty-three base 

pairs (bps) known as “long allele (L)” or a deletion 

referred to as “short allele (S)” polymorphism located 

in the promotor of SLC6A4 gene (5-HTTLPR), can 

make difference among carriers of these genotypes in 

terms of response to SSRI therapy60,61. Particularly, it 

has been shown that better therapeutic response to 

SSRI therapy is associated with homozygous long/long 

(LL) and heterozygous long/short (LS) genotypes in 

comparison with homologous short/short (SS 

genotypes)62,63. According to a groundbreaking meta-

analysis on how inter-populational and inter-racial 
genetic variation can lead to a different response to 

therapy outcomes, some reports suggest that in 

Caucasians short/short (S/S) genotype and the presence 

of short (S) allele can eventuate into clinical non-

remission and poor therapeutic response to SSRI 

therapy, respectively. In contrast, some studies 

demonstrated that SS genotype can play a protective 

role in Asians and contribute to a better response to 

therapy64. 

Pharmaco-Electroencephalography  

There is an urgent need to identify reliable biomarkers 
playing contributory role in the evaluation of 

therapeutic response to antidepressant treatments. As 

strongly proposed and supported by the evidence, 

electroencephalography (EEG) which is an easily 

accessible method can be measurably help both 

neuroscientists and clinical practitioners to predict how 

depressed patients respond to conventional anti-

depressant therapies. Over the last 40 years, a 

considerable amount of effort has been devoted to 

identify and introduce EEG biomarkers regarding how 

depressed patients are monitored for response to 
treatment65,66. In this context, Cook et al.,67 reported 

that MDD patients with favorable therapeutic response 

to antidepressant medications showed a reduced 

prefrontal ζ cordance after 48h and 1 week following 

the administration of antidepressant drugs. Similarly, 

Bares et al.,68 conducted a 4-week clinical trial on 
seventeen subjects with depression refractory to 

therapy in order to find whether decrease in QEEG can 

play a contributory role in differentiation between 

depression with a better response to antidepressant 

therapy and treatment-resistant depression. They 

showed that subjects who responded favorably to 

therapy 1 week after the administration of 

antidepressant treatment showed a reduced prefrontal 

QEEG ζ cordance as an early detection marker; 

however, in 12 subjects with poor response to therapy 

(non-responders) increased prefrontal cordance in ζ 

frequency band was reported. 
The hypothesis that prefrontal theta cordance shows 

strong potential to be considered a reliable QEEG 

marker to evaluate whether or not depressed patients 

respond favorably to treatments is also proposed and 

supported by Kopecek et al.,69. They reported an 

increased prefrontal QEEG ζ cordance in a depressed 

37-year-old woman whose disorder was diagnosed as 

refractory to therapy. In this sense, Hunter et al.,70 

carried out an 8-week double-blinded randomized 

placebo-controlled trial on ninety-four MDD subjects 

under treatment with FLX or venlafaxine to investigate 
identifiable QEEG markers in patients. They found that 

MDD patients with a significantly higher decrease in 

midline-and-right-frontal cordance in QEEG responded 

better to therapy in comparison with non-responders in 

the first week following the treatment. 

 It is worth noting that several studies reported various 

QEEG features and predictors of improved response to 

antidepressant treatments including raised ζ activity in 

Brodmann's area 24/32 (rostral anterior cingulate)71, 

lower β power and inter-hemispheric β coherences72, 

and greater α power at occipital sites73. 

Another parameter which has been used to predict the 
response to SSRIs is Antidepressant Treatment 

Response index (ATR) which is defined as the 

combination of ζ and α recorded from prefrontal areas 

at baseline and the first week following the initiation of 

antidepressant treatment74. The ATR scoring system 

measures the probability of favorable response to SSRI 

medications with 70% accuracy in general66. 

Neuroimaging Biomarkers  
Brain structure is another biomarker for the evaluation 

of treatment, a voxel-based morphometric analysis has 

been conducted on MDD patients proposed that 
subjects there is a positive correlation between the gray 

matter volume in cingulate cortex, occipital lobe, and 

middle frontal gyrus, and more favorable response to 

treatment75. In addition, correlation between white 

matter hyperintensity and poor therapeutic response 

has also been reported. The case in point is the white 

matter hyperintensity found in subcortical areas of the 

left cerebral hemisphere which is correlated with 

reduced response to FLX76,77. Moreover, Positron 

Emission Tomography (PET) studies indicated that 

glucose uptake in putamen nucleus, midbrain, and 
dorsal thalamus can be considered a predictive marker 
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of remission in response to antidepressant therapy78. 

Furthermore, altered glucose metabolism in brain 

measured by PET in MDD patients under FLX 

treatment and favorable response to antidepressant 

therapy has been reported to be associated with dorsal 
cortical and brainstem increases (posterior cingulate, 

anterior, prefrontal, and parietal) and striatal and limbic 

decreases (hippocampus, subgenual cingulate, palli-

dum, and insula). 

 

CONCLUSIONS 

 

Regarding the widespread prescription of FLX with the 

aim of treating plenty of psychological disorders 

including depressive spectrum disorders, anxiety 

spectrum disorders, OCD; its potential effects on the 

nervous system along with other organs, and the 
necessity for its long duration of administration, we 

need a comprehensive and clear conception of what 

lies beneath the therapeutic effects produced by this 

drug and how different individuals (genomes) and 

populations (gene pools) respond to this drug. In this 

context, a vast deal of effort is required to be devoted 

in order for unexplored aspects of this drug to be 

discovered. Additionally, there still exist a long way 

for its shortcomings and side effects at genomic and 

phenomic levels to be understood. 
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