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Abstract 

____________________________________________________________________________________________________ 
 
Aim and Objective: After the COVID-19 outbreak, drug repurposing has emerged 
as an effective and fast approach for combating the SARS-CoV-2 crisis. in this 
work, computational drug repurposing has been utilized to identify new SARS-
CoV-2Mpro inhibitors. 

Methods: Comparative molecular docking studies were used to evaluate the 
activity of the commercially available oral antiviral drug simeprevir and its 
degradation products (compounds 1–5) against the main protease (Mpro) of SARS-
CoV-2 (PDB (Protein Data Bank) ID: 6lu7; resolution: 2.16 Å). Moreover, the 
ADMET and in-silico toxicity properties of the acidic (compounds 1–3) and 
oxidative (compounds 4 and 5) degradation products of simeprevir were predicted.  
Results: Docking studies revealed good binding affinities for compounds (1–5) 
against Mpro of SARS-CoV-2, with binding free energies ranging from −6.23 

to−7.65 kcal/mol. The acidic degradant 2 exhibited the best affinity and was 
superior to simeprevir and a natural ligand. All compounds were expected to be 
safe to the CNS.  
Conclusion: Compounds 1, 4, and 5 were expected to possess good human 
intestinal absorption, whereas compounds 2 and 3 appeared to have moderate 
intestinal absorption. 
Keywords: ADMET; Computational chemistry; COVID-19; fragment-based drug 
discovery; Simeprevir; Structure–activity relationships. 

 

INTRODUCTION 

 

The severe acute respiratory syndrome is a result of 

(SARS-CoV-2), which belongs to the subfamily 
Coronavirinae, family Coronaviridae, and affects the 

respiratory system, causing a severe acute respiratory 

syndrome. In March of 2020, the WHO proclaimed 

COVID-19 a worldwide pandemic. It expanded from 

Wuhan, a crowded city in China, across China, and 

was then transferred to most other countries of the 

world1. As a specific vaccine for COVID-19, either for 

prophylaxis or treatment to prevent mortality, is 

lacking, the search for a quick and effective therapeutic 

protocol for this disease became a prominent challenge 

worldwide. 

In fact, de novo drug discovery has long been 
recognized as a long and costly process, especially in 

pandemic circumstances, with a total average cost of 

$2 to $3 billion and taking at least 13-15 years to reach 

market availability2. During the 1990s, high-throughput 

screening was introduced as a tool to facilitate and 

hasten drug discovery3 however, chemical libraries still 

need to be prepared through a highly laborious 
synthetic approach4. A dramatic change occurred after 

the evolution of protein crystallography and NMR that 

gave access to well-characterized protein-ligand 

complexes, which have guided drug-lead optimization 

in terms of selectivity and potency5. Simultaneously, 

computational methods have been utilized for the 

calculation of molecular interactions, identification of 

protein-ligand complexes, and screening of chemical 

libraries against a molecular target6. 

Based on the successful drug repurposing stories in the 

drug market7, drug repurposing (also called drug 

repositioning or drug profiling) has been introduced as 
a useful tool to decrease costs and save time in drug 

discovery. This approach depends on finding a new 

indication for an already existing FDA-approved drug8. 

http://www.ujpronline.com/
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In addition to the drug indication, which is available, a 

full descriptive drug profile, including pharmaco-

kinetics, pharmacodynamics, and toxicological studies, 

is also necessary; all of this pre-existing drug 

information saves time and reduces the research efforts 
in reaching the new drug indication9. 

After the COVID-19 outbreak in December 2019, drug 

repurposing was chosen as an effective and fast way to 

manage the SARS-CoV-2 crisis compared with the 

long cycle of de novo drug discovery10. In addition to 

drug repurposing, computational methods were of great 

interest to many researchers, which led to the dawn of 

“in-silico repurposing,” especially that of pre-existing 

broad-spectrum antivirals, as this will help shorten the 

investigation time for any hit compound termed “the 

drug that will hit the molecular target” to be tested 

directly in Phase 2 clinical trials. Therefore, by 
adopting this approach, a new treatment may emerge 

rapidly and help end this worldwide crisis11. 

Simeprevir is among the pre-existing broad-spectrum 

antivirals. It is a direct-acting antiviral with a 

macrocyclic structure (Figure 1) that was originally 

used for the treatment of genotype I hepatitis C 

(HCV)12. It is a specific and potent inhibitor of the 

NS3/4A protease, which is an enzyme that is essential 

for the life cycle of HCV because viral replication is 

disrupted by the inhibition of the NS3/4A protease12. 

Infact, the mechanism of entry of corona viruses into 
cells occurs via the action of cellular proteases (i.e., 

human airway trypsin-like protease, cathepsins, and 

transmembrane protease serine 2 (TMPRSS2)), which 

split the spike protein of the virus and cause further 

penetration alterations13. It has been reported that 

proteases can be inhibited in SARS-CoV-2 by 

compounds targeting other viral proteases14. Moreover, 
it was reported that simeprevir may be used for the 

treatment of other viral infections, such as 

HIV/AIDS15. Therefore, testing simeprevir against the 

SARS-CoV-2 protease may be helpful for the treatment 

of COVID-19. 

The principal feature of fragment-based drug discovery 

(FBDD) is the screening of a small library of low-

molecular-weight compounds, followed by the growth 

of these fragments synthetically, to produce lead 

compounds. In the present work, we planned to adopt a 

“reverse fragment-based drug discover approach” for 

the repurposing of different fragments of an already 
active drug (simeprevir) via the investigation of its 

binding to the new target, the reorientation of the 

fragment in this target, and/or the omission of 

unnecessary fragments, rather than building up a lead 

compound from promising fragments (standard 

fragment-based drug design). This approach should be 

distinguished from the “inverse drug discovery” 

approach, which identifies proteins via targeting using 

potent electrophiles. Thus, a set of already character-

ized fragments/degradants (Figure 1) of the antiviral 

drug simeprevir was selected to test such an approach 
virtually. 

 

 
Figure 1: Simeprevir and its degradation products. 

 

MATERIALS AND METHODS 

 

Preparation of compounds 1–5 
Compounds 1–5 were prepared and purified as reported 

previously16. 

In-silico ADMET study 

The ADMET descriptors protocol was implemented 

using Discovery studio 4.0, to calculate the absorption, 

distribution, metabolism, excretion, and toxicity of 

compounds 1–5. We implemented the CHARMM force 

field then a small molecule protocol was used to 

prepare and minimize the compounds17,18. 

Docking studies 

The crystal structure of the target enzyme (SARS-CoV-
2 Mpro (PDB ID:6 lu7, resolution: 2.16 Å)) was 

obtained from the Protein Data Bank 

(http://www.pdb.org). The docking analysis was 

performed using the Molecular Operating Environment 

(MOE)19,43,44. Compounds 1–5 were tested against 
Mpro, to estimate their free energies, and binding 

modes. At the inception, the crystal structure of Mpro 

was deprived of water, except for one essential chain, 

for binding. The binding pocket of the protein was 

defined using the co-crystallized ligand (PRD-002214) 

as a reference; subsequently, the protein structure was 

protonated, the hydrogen atoms were hidden, and the 

energy was minimized20. 

ChemBioDraw Ultra 14.0 was used to draw the 

structures of compounds (1–5) and the co-crystallized 

ligand and saved in the SDF format. Next, the MOE 
software was used to open the SDF files, protonate 3D 

structures, and minimize the energy of the molecules. 
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Low RMSD values were accomplished during the 

validation process via docking of the co-crystallized 

ligand solely in the target receptor18,21. The default 

protocol was followed; in each case, we generated 30 

docked structures using genetic algorithm searches, 
followed by the visualization of the output from the 

MOE software, as visualized using the Discovery 

studio 4.0 software17,22. 

Physicochemical properties 

Discovery studio 4.0 was used to determine the 

physicochemical properties of compounds (1–5). At the 

start, we implemented the CHARMM force field, and 

then a small molecule protocol was used to prepare and 

minimize the compounds. The different parameters 

used here were calculated from the molecular 

properties of the small molecule protocol20. 

Cell Culture 
Nawah Scientific Inc. (Mokatam, Cairo, Egypt) 

supplied the HSF cell line. Cells were maintained in 

DMEM medium supplemented with 100 mg/mL of 

streptomycin, 100 U/mL of penicillin, and 10% heat-

inactivated fetal bovine serum in a humidified, 5% 

(v/v) CO2 atmosphere at 37°C16. 

 

RESULTS AND DISCUSSION 

 

Docking studies 

To explore the target-binding mechanism of 
Simeprevir and compounds (1–5), they were docked 

against (Mpro) (PDB ID: 6lu7, resolution: 2.16), the 

major protease of SARS-CoV-2. A reference molecule 

was used: the co-crystallized ligand (PRD-002214). 

With binding free energies ranging from 6.23 to 7.65 

kcal/mol, the docked compounds showed excellent 

binding affinities against Mpro (Table 1). 

Table 1: The docking binding free energies of five 

compounds, simeprevir and the co-crystallized 

ligand (PRD-002214) against COVID-19 main 

protease. 
Compound 

 

Bindingfree energy 

(kcal/mol) 

Simeprevir -7.00 

Co-crystallized 
ligand (PRD-

002214) 

-6.94 

1 -6.95 
2 -7.65 
3 -6.23 
4 -6.44 

5 -6.32 

 

The binding energy of 6.94 kcal/mol was found in the 
crystalline ligand (PRD-002214). The crystalline 

ligand had the following binding mode: Mpro's initial 

pocket was filled by the 2-oxopyrrolidin-3-yl molecule, 

which formed a hydrogen bond with Phe140. The tert-

butyl carbamate moiety also filled Mpro's second 

pocket, making one hydrogen bond with Me49. The 

phenyl ring of the phenylalanine molecule also filled 

the third receptor pocket, producing a hydrophobic 

contact with His41. Finally, the fourth pocket received 

the ethyl propionate moiety (Figure 2, Figure 3, and 

Figure 4). 

Simeprevir had a binding mechanism that was 
comparable to that of Mpro's co-crystallized ligand. It 

had binding energy of about 7.000 kcal/mol. Mpro's 

initial pocket was filled by the cyclopropane 

sulfonamide molecule, which formed a single hydrogen 

bond with Asn142. 

                        
Figure 2: Co-crystallized ligand (PRD-002214) docked            Figure 3: Mapping surface showing the 

 in to the active site of the COVID-19 main protease.          co-crystallized ligand (PRD-002214) occupying  

      The hydrogen bonds are represented in green dashed lines, and the        the active pocket of the COVID-19 main protease. 
        hydrophobic interactions are represented in orange dashed lines. 

 

In addition, the 5-methyl-2,3,3a,6,7,8,9,11a,12,12a,13, 
14a-dodecahydrocyclo-penta [c] is a 5-methyl-

2,3,3a,6,7,8,9,11a,12,12a,13, 14a-dodecahydrocyclo- 

penta cyclopropa[g] [1,6] The second pocket of Mpro 

was filled by the diazacyclo tetra decine-4,14(1H,5H)-

dione moiety, which established a hydrogen connection 

with Met49. Furthermore, the 7-methoxy-8-

methylquinoline molecule was found in the receptor's 

third pocket, making a hydrophobic contact with 

Met165. The 4-isopropylthiazole molecule was finally 

put into the fourth pocket, creating a hydrogen 
connection with Asn142 (Figure 5, Figure 6, and 

Figure 7). In the target-binding site, Compound 1 had a 

binding mechanism similar to the co-crystallized ligand 

and simeprevir. It occupied three Mpro pockets and 

had binding energy of 6.95 kcal/mol. The tetrahydro-

1H-cyclopenta[c]furan-1,3(3aH)-dione moiety was 

found in Mpro's first pocket, where it formed two 

hydrogen bonds with Gly143 and Gln189. 

Furthermore, the 7-methoxy-8-methylquinoline moiety 
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filled the receptor's second pocket and formed two 

hydrophobic contacts with Glu166. In addition, the 4-

isopropylthiazole molecule was found in the third 

pocket, generating two hydrophobic contacts with 

Pro168 (Figure 8, Figure 9, and Figure 10). In the 

target-binding site, Compound 2 had a binding 

mechanism identical to the co-crystallized ligand and 

simeprevir.

                                              
   Figure 4: 2D interaction of the co-crystallized                 Figure 5: Simeprevir docked into the active site 

   ligand (PRD-002214) in the active site of the                                   of the COVID-19 main protease.  

                   COVID-19 main protease.                          Hydrogen bonds are represented in green dashed lines and the hydrophobic                           
                                                                                                 Interactions are represented in orange dashed lines 

                                              
Figure 6: Mapping surface showing simeprevir occupying        Figure 7: 2D interaction of simeprevir in the 

       the active pocket of the COVID-19 main protease.             active site of the COVID-19 main protease. 

                                                
Figure 8: Compound 1 docked into the active site            Figure 9: Mapping surface showing compound 1 

                  of COVID-19 main protease.                                            occupying the active pocket of the 

The hydrogen bonds are represented in green dashed lines and the                                           COVID-19 main protease. 
 hydrophobic interactions are represented in orange dashed lines.  

 
It occupied three pockets in Mpro and had the lowest 

binding energy (7.65 kcal/mol) of all the chemicals 

studied. 5-methyl- 2,3,3a,6,7,8,9,11a, 12,12a,13,14a-

dodecahydro-cyclo-penta [c] is a 5-methyl-2,3,3a,6,7, 

8,9,11a,12,12a, 13,14a-dodecahydrocyclo penta [c] is a 

5-methyl-2 cyclopropa[g][1,6] The first pocket of 

Mpro was filled by the diazacyclotetra decine-

4,14(1H,5H)-dione moiety, which established a 

hydrogen connection with Asn142. With Cys145 and 

His163, it also created two hydrophobic contacts. The 

4-isopropylthiazole molecule was introduced into the 

second pocket, where it formed two hydrophobic 

contacts with His41 and a hydrogen bond with Thr190. 

Furthermore, the 7-methoxy-8-methylquinoline mole-

cule was found in the receptor's third pocket, 

generating a hydrophobic contact with Pro168 (Figure 

11, Figure 12, and Figure 13). 

Conversely, compounds 3, 4, and 5 exhibited a lower 

binding affinity compared with the co-crystallized 

ligand (PRD-002214), with a free energy of −6.23, 

−6.44, and −6.32, respectively. 
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      Figure 10: 2D interaction of compound 1 in                 Figure 11: compound 2 docked into the active 

    the active site of the COVID-19 main protease.                          site of COVID-19 main protease. 
                                                                                                      The hydrogen bonds are represented in green dashed lines and the hydrophobic                      

interactions in orange dashed  lines and pi-anionic interaction in blue lines.                                                                                                                                                                                                

                                                   
     Figure 12: Mapping surface showing compound 2             Figure 13: 2D interaction of compound 2 

                 occupying the active pocket of the                    in the active site of the COVID-19 main protease. 

                        COVID-19 main protease. 

 

In detail, compound 3 formed four hydrogen bonds 
with Gly143, Gln189, Asn142, and Glu166, whereas 

compound 4 formed two hydrogen bonds with Met49 

and Glu166 and five hydrophobic interactions with 

Glu166, His 163, and Met165. Regarding compound 5, 

it formed one hydrogen bond with Glu166 and six 

hydrophobic interactions with His163, His41, Met165, 

and Glu166. 

 

 

Fragment-based approach analysis 
The results of the docking study (summarized in Table 

2) showed that interaction with the fourth pocket of the 

protease was not essential for the activity of the ligand 

and compounds 1 and 2. Moreover, the establishment 

of one hydrogen bond in the first pocket was sufficient 

for good activity, as in the ligand, simeprevir, and 

compound 2. Adding one other H-bond in the first 

pocket yielded a lower activity, as in compound 1.  

 

Table 2: Summarized outcomes of docking study. 
Compound Interactions with receptor Chemical moiety (pharmacophore) 

Ligand (PRD-
002214) 
binding energy 
-6.95 

hydrogen bond with Phe140 the 2-oxopyrrolidin-3-yl 
hydrogen bonding interaction with Met49 tert-butyl carbamate 

hydrophobic interaction with His41 the phenyl ring of phenylalanine 
 ethyl propionate 

Simeprevir 
binding energy 
-7.00 
 
 
 
 

hydrogen bond with Asn142 cyclopropane sulfonamide 

hydrogen bond with Met49 

5-methyl-2,3,3a,6,7,8,9,11a,12,12a, 13,14a-
dodecahydrocyclopenta 

[c]cyclopropa[g][1,6]diazacyclotetra 
decine-4,14(1H,5H)-dione 

hydrophobic interaction with Met165 7-methoxy-8-methylquinoline 
hydrogen bonding interaction with Asn142 4-isopropylthiazole 

Compound 1 

binding energy 
-6.94 
 

two hydrogen bonds with Gly143 and Gln189 
The tetrahydro-1H-cyclopenta[c]furan-

1,3(3aH)-dione 
two hydrophobic interactions with Glu166 7-methoxy-8-methylquinoline 
two hydrophobic interactions with Pro168 4-isopropylthiazole 

Compound 2 
binding energy 
-7.65 
 

 
 
 

hydrogen bond with Asn142 
 

two hydrophobic interactions with Cys145 and 
His163 

5-methyl-2,3,3a,6,7,8,9,11a,12,12a,13,14a-
dodecahydrocyclopenta 

[c]cyclopropa[g][1,6]diazacyclotetra 
decine-4,14(1H,5H)-dione 

hydrogen bonding interaction with Thr190 
two hydrophobic interactions with His41. 

4-isopropylthiazole 

hydrophobic interaction with Pro168 7-methoxy-8-methylquinoline 
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In contrast, adding two other hydrophobic interactions 

to the first pocket potentiated the activity, as in 

compound 2. However, the tetradecagon macrocycle 

was not essential; asit could be replaced with a less-

complex moiety that was able to form hydrogen bonds 
and hydrophobic interactions. Moreover, the 

establishment of only one hydrophobic interaction in 

the third pocket yielded a better activity, similar to that 

achieved in the ligand, simeprevir, and compound 2 by 

the presence of the 7-methoxy-8-methylquinoline 

moiety. The presence of the 4-isopropylthiazole moiety 

in the second pocket afforded the essential and only 

hydrogen bond, as in the ligand, simeprevir, and 

compound 2. Furthermore, it formed two other 

hydrophobic interactions, which seemed to potentiate 

the activity, as in compound 2. In conclusion, the 7-

methoxy-8-methylquinoline and 4-isopropylthiazole 
moieties should be retained and be located in the third 

and second pocket, respectively. The replacement of 

the tetradecagon macrocycle with a smaller moiety is 

recommended. 

In-silico ADMET analysis 

Running in-silico ADMET studies at the early stages of 

compound design may reduce the risk of late-stage 

attrition and direct the screening procedure to choose 

the most promising ligands. These experiments could 

predict properties such as oral absorption, 

bioavailability, blood–brain barrier (BBB) penetration, 
excretion, and distribution. These properties provide 

important information about the dose, dose frequency, 

route of administration, and safety of the examined 

drug. Many descriptors are used in ADMET studies: I 

aqueous solubility, which predicts each compound's 

solubility in water at 25°C; ii) BBB penetration, which 

predicts a molecule's BBB penetration; iii) CYP2D6 

binding, which predicts cytochrome P450 2D6 enzyme 
inhibition; iv) hepatotoxicity, which predicts if the 

examined compound can cause human hepatotoxicity 

in dose dependant manner23. 

Discovery studio 4.0 was used to predict ADMET 

descriptors for all compounds. The predicted 

descriptors are listed in Table 3. The ADMET aqueous 

solubility levels of compounds 3 and 4 appeared to be 

in the good range, whereas compound 5 showed low 

aqueous solubility. Conversely, compounds 1 and 2 

exhibited very low solubility. ADMET BBB 

penetration studies predicted that the BBB penetration 

levels of compounds 2 and 3 were very low, whereas 
compound 4 exhibited low level and compounds 1 and 

5 showed medium BBB penetration levels. 

Accordingly, all compounds were expected to be safe 

to the CNS. 

Intestinal absorption is the percentage of a drug that is 

absorbed by the gut wall24. At least 90% of absorption 

into the bloodstream in humans is needed for a 

compound to be classified as a well-absorbed 

compound25. Moreover, poor absorption was the main 

reason for numerous compound failures in the clinical 

phase 26. According to ADMET studies, compounds 1, 
4, and 5 were expected to possess good HIA, whereas 

compounds 2 and 3 appeared to have moderate 

intestinal absorption. 

 

Table 3: Predicted ADMET for the designed compounds and reference drugs. 

Compound 
BBB 

levela 

Absorption 

levelb 

Solubility 

levelc 

Hepatotoxic 

predictiond 

CYP2D6 

predictione 

PPB 

predictionf 

1 2 0 1 TRUE FALSE TRUE 
2 4 1 1 TRUE FALSE TRUE 
3 4 1 3 FALSE FALSE FALSE 
4 3 0 3 TRUE FALSE TRUE 
5 2 0 2 TRUE FALSE TRUE 

a BBB level, blood brain barrier level, 0 = very high, 1 = high, 2 = medium, 3 = low, 4 = very low. 
b Absorption level, 0 = good, 1 = moderate, 2 = poor, 3 = very poor. 

c Solubility level, 1 = very low, 2 = low, 3 = good, 4 = optimal. 
d Hepatotoxicity probability, TRUE means toxic, FALSE means non-toxic. 
e CYP2D6, cytochrome P2D6, TRUE = inhibitor, FALSE = non inhibitor. 

f PBB, plasma protein binding, FALSE means less than 90%, TRUE means more than 90%. 

 

The hepatotoxicity model predicts the probable organ 

toxicity of a large variety of structurally varied 

substances27. Except for compound 3, all of the 

compounds studied were shown to exhibit some 

amount of hepatotoxicity. In-vitro and in-vivo research 

is needed to confirm these preliminary in-silico 
findings. The cytochrome P450 2D6 (CYP2D6) model, 

which uses the 2D chemical structure as an input, 

predicts CYP2D6 enzyme inhibition. The inhibition of 

CYP2D6 allows the impact of various medications to 

be amplified, potentially resulting in hazardous levels. 

As a result, under drug research and development 

regulations, a CYP2D6 inhibition trial is a 

requirement28. All examined compounds were 

predicted as non-inhibitors of CYP2D6. Consequently, 

the examined compounds are not expected to have a 

toxic effect from this perspective. The plasma protein 

binding model predicts a compound's capacity to attach 

to plasma proteins. This model predicts how likely a 

substance is to be strongly bound (90 percent binding) 

to blood carrier proteins29.  

 

 
Figure 13: The expected ADMET studies. 
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Because the bound fraction is temporarily sheltered 

from metabolism, drug molecule plasma protein 

binding can have an impact on their efficiency. The 

unbound fraction, on the other hand, has therapeutic 

effects when it is isolated30. All compounds tested here 
were expected to exhibit >90% binding to plasma 

proteins, with the exception of compound 4 (Figure 

13). 

Physicochemical properties 

The log p values represent the degree of lipophilicity of 

a chemical compound, whereas the Log D values 

represent the degree of lipophilicity of a chemical 

compound taking into account the molecule's 

ionization states31. The fact that these values have risen 

indicates that the lipophilic nature of the chemical 

under examination has improved. Compounds 1, 2, 4, 

and 5 have different A log P and LogD values, ranging 
from 1.928 to 5.602. These values may make it simpler 

for such substances to enter mucosal membranes and 

the lipophilic capsules of the virus. 

Furthermore, the molecular polar surface area (MPSA) 

is a crucial parameter that affects drug bioavailability; 

compounds that are passively absorbed and have an 
MPSA of >140 have a low oral bioavailability32. 

MPSA (140) levels were found in all of the substances 

studied. The molecular volume (MV) descriptor also 

provides information on molecule transport 

characteristics such as GIT absorption33. The MV is 

inversely related to the drug diffusivity. Molecules 

with a lower MV have a higher diffusivity than those 

with a higher MV34. It is noticeable that the tested 

compounds exhibited low MV values compared with 

simeprevir (Table 4). The electric dipole moment (µ) 

represents the electrical effects in drug–receptor 

interactions35. The dipole moment values of the 
substances investigated varied from 3.2791 to 9.11863. 

 

Table 4: Physico-chemical properties of the examined compounds. 
Comp. ALog Pa Log Db Pkac MPSAd MSAe MVf Diploeg 

1 4.676 4.677 
3.98 
4.47 

115.85 437.77 354.66 3.2791 

2 5.602 5.603 
3.98 
4.47 

121.89 615.58 500.77 4.07006 

3 -0.253 -0.149 2.5 141.26 428.6 358.77 7.21119 

4 1.928 1.928 - 108.61 355.15 270.28 6.10701 

5 3.019 3.019 - 88.38 345.41 267.88 7.40372 
a Log of the octanol-water partition coefficient.; bThe octanol-water partition coefficient calculated taking into account the ionization states of the 

molecule.; cThe pKa of all ionizable sites.; d Molecular surface area: Calculates the total surface area for each molecule using a 2D approximation. 
e Molecular polar surface area: Calculates the polar surface area for each molecule using a 2D approximation. 

f Molecular volume: calculates the 3D volume for each molecule using the current 3D coordinates. 
g Dipole moment: 3D electronic descriptors that indicates the strength and orientation behavior of a molecule in an electrostatic field. 

 

Toxicity studies (in-silico/in-vitro) 

Our compounds' toxicity was predicted using the 

Discovery studio software's proven and built 

models36,37. The ADMET research looked at the 

toxicity of the chemicals tested on the central nervous 

system and liver. The ability to assess a new drug's 

carcinogenic potential is dependent on its 

measurement38. As a result, three in-silico investiga-

tions were conducted: I the TOPKAT mouse male 
FDA none vs carcinogen model, which is an FDA 

Rodent Carcinogenicity model; and ii) the TOPKAT 

mouse male FDA none vs carcinogen model, which is 

an FDA Rodent Carcinogenicity model. The chosen 

model determines whether or not specific substances 

are carcinogenic39.  

ii) Carcinogenic potency (TD50), which forecasts a 

chemical's median tumorigenic dose (the dosage 

needed to cause tumorigenesis in 50% of rats) in a 

prolonged exposure toxicity test39. The Carcinogenic 

Potency Data Base includes the TD50 measure, which 

has been used previously to evaluate carcinogenic 
potency (CPDB)40. iii) In a developmental toxicity 

potential evaluation, developmental toxicity potential 

indicates whether a chemical substance is likely to be 

hazardous. Any reversible or irreversible functional or 

structural alteration that interferes with and changes 

homeostasis, proper growth, differentiation, 

development, or behavior is referred to as 

developmental toxicity41,42. Three more in-silico 

studies were conducted to determine the acute and 

chronic toxicity of the investigated substances. I 

Maximum tolerated dose (MTD) for rats, which 

forecasts the greatest dose of a drug that will provide 

the intended effect without generating undesirable side 

effects43,44, ii) rat oral LD50, which forecasts a 

chemical's rat oral acute median fatal dosage (LD50) in 

toxicity tests45. iii) The rat chronic least observed 

adverse effect level (LOAEL), which forecasts a 

chemical's rat chronic LOAEL45. 
In-silico, most chemicals demonstrated relatively little 

unfavourable effects and toxicity against the evaluated 

models, as shown in Table 5. With the exception of 

compound 3, all compounds seemed to be non-

carcinogenic in the FDA Rodent Carcinogenicity 

Model. Compounds 1 and 2 had low TD50 values in 

the carcinogenic potency TD50 mouse model, but 

compounds 2, 4, and 5 had high TD50 values. The 

tested compounds showed MTDs ranging from 0.006 

to 0.020 g/kg of body weight in the rat MTD model. 

Furthermore, in the developmental toxicity potential 

model, all chemicals were non-toxic. All drugs had 
modest oral LD50 values in the rat oral LD50 

paradigm, ranging from 0.080 to 0.352 mg/kg of body 

weight/day. Finally, the compounds' LOAELs in the rat 

chronic LOAEL model varied from 0.005 to 0.023 g/kg 

of body weight. The toxicity of a chemical structure is 

very crucial for the validation of its use as a drug. 

Thus, it was of interest to check the toxicity of the 

tested structures. The SRB assay was used to assess the 

potential toxicity and/or safety of simeprevir and its 
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degradation products (1–5) against a human skin 

fibroblast (HSF) normal cell line at five different 

concentrations (0.01, 0.1, 1, 10, and 100 µM) in 

comparison with a standard drug (doxorubicin, positive 

control). The SRB assay showed a lack of observed 
alterations of cell viability, with the exception of 

compound 3, for which a slight cytotoxicity was 

noticed, in accordance with the in-silico study. These 

results were also confirmed by the recording of 

morphological changes via optical microscopy images. 

Simeprevir and compounds 1–5 were demonstrated to 
be non-toxic up to 100 µM (IC50> 100 µM)16. 

 

Table 5: Toxicity properties of compounds. 
    Compound 1 2 3 4 5 

TOPKAT_mouse_male_ 
FDA_none_vs_carcinogen model 

Non-
carcinogen 

Non-
carcinogen 

Carcinogen 
Non-
carcinogen 

Non-
carcinogen 

Carcinogenic Potency TD50 Mouse a 11.613 3.910 33.345 47.454 73.882 
Developmental Toxicity Potential Toxic Non-Toxic Non-Toxic Non-Toxic Non-Toxic 
Rat Maximum Tolerated Dose b 0.018 0.006 0.012 0.020 0.013 
Rat Oral LD50 

b 0.300 0.352 0.290 0.115 0.080 
Rat Chronic LOAELb 0.011 0.005 0.005 0.019 0.023 

aUnit: mg/kg body weight/day; bUnit: g/kg body weight. 

 

CONCLUSIONS 

 

The molecular docking study of the antiviral 
simeprevir and its degradants 1–5 proved that 

simeprevir and its degradants 1 and 2 could be added to 

the protocol of treatment of SARS-COV-2. A docking 

study revealed the higher binding affinity of simeprevir 

and compound 2 compared with the natural ligand, 

whereas compound 1 showed equal affinity to the 

natural ligand. In contrast, compounds 3–5exhibited a 

lower binding affinity. ADMET and toxicity studies 

confirmed that compounds 1 and 2 are safe to the CNS, 

non-toxic, non-carcinogenic, and expected to be orally 

bioavailable. The approach highlighted in this study 
could be defined as “reverse FBDD,” in which 

different fragments of an already active candidate 

(simeprevir) were inspected, its binding was identified, 

and reorientation of particular fragments in the active 

site was performed, to afford the best binding. The 

removal of unnecessary fragments (e.g., cyclopropane 

sulfonamide) from already active drug/compounds is 

recommended, rather than building up compounds 

from active fragments using the standard “FBDD” 

approach. 
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